1,366 research outputs found
Dynamics of spinning test particles in Kerr spacetime
We investigate the dynamics of relativistic spinning test particles in the spacetime of a rotating black hole using the Papapetrou equations. We use the method of Lyapunov exponents to determine whether the orbits exhibit sensitive dependence on initial conditions, a signature of chaos. In the case of maximally spinning equal-mass binaries (a limiting case that violates the test-particle approximation) we find unambiguous positive Lyapunov exponents that come in pairs ± lambda, a characteristic of Hamiltonian dynamical systems. We find no evidence for nonvanishing Lyapunov exponents for physically realistic spin parameters, which suggests that chaos may not manifest itself in the gravitational radiation of extreme mass-ratio binary black-hole inspirals (as detectable, for example, by LISA, the Laser Interferometer Space Antenna)
The dynamics of precessing binary black holes using the post-Newtonian approximation
We investigate the (conservative) dynamics of binary black holes using the
Hamiltonian formulation of the post-Newtonian (PN) equations of motion. The
Hamiltonian we use includes spin-orbit coupling, spin-spin coupling, and mass
monopole/spin-induced quadrupole interaction terms. In the case of both
quasi-circular and eccentric orbits, we search for the presence of chaos (using
the method of Lyapunov exponents) for a large variety of initial conditions.
For quasi-circular orbits, we find no chaotic behavior for black holes with
total mass 10 - 40 solar masses when initially at a separation corresponding to
a Newtonian gravitational-wave frequency less than 150 Hz. Only for rather
small initial radial distances, for which spin-spin induced oscillations in the
radial separation are rather important, do we find chaotic solutions, and even
then they are rare. Moreover, these chaotic quasi-circular orbits are of
questionable astrophysical significance, since they originate from direct
parametrization of the equations of motion rather than from widely separated
binaries evolving to small separations under gravitational radiation reaction.
In the case of highly eccentric orbits, which for ground-based interferometers
are not astrophysically favored, we again find chaotic solutions, but only at
pericenters so small that higher order PN corrections, especially higher spin
PN corrections, should also be taken into account.Comment: 18 pages, 26 figure
Non-autonomous random dynamical systems: Stochastic approximation and rate-induced tipping
In this thesis we extend the foundational theory behind and areas of application of non-autonomous random dynamical systems beyond the current state of the art. We generalize results from autonomous random dynamical systems theory to a non-autonomous realm. We use this framework to study stochastic approximations from a different point of view. In particular we apply it to study noise induced transitions between equilibrium points and prove a bifurcation result. Then we turn our attention to parameter shift systems with bounded additive noise. We extend the framework of rate induced tipping in deterministic parameter shifts for this case and introduce tipping probabilities. Finally we perform a case study by developing and applying a numerical method for calculating tipping probabilities and examining the results thereof.Open Acces
A survey of spinning test particle orbits in Kerr spacetime
We investigate the dynamics of the Papapetrou equations in Kerr spacetime.
These equations provide a model for the motion of a relativistic spinning test
particle orbiting a rotating (Kerr) black hole. We perform a thorough parameter
space search for signs of chaotic dynamics by calculating the Lyapunov
exponents for a large variety of initial conditions. We find that the
Papapetrou equations admit many chaotic solutions, with the strongest chaos
occurring in the case of eccentric orbits with pericenters close to the limit
of stability against plunge into a maximally spinning Kerr black hole. Despite
the presence of these chaotic solutions, we show that physically realistic
solutions to the Papapetrou equations are not chaotic; in all cases, the
chaotic solutions either do not correspond to realistic astrophysical systems,
or involve a breakdown of the test-particle approximation leading to the
Papapetrou equations (or both). As a result, the gravitational radiation from
bodies spiraling into much more massive black holes (as detectable, for
example, by LISA, the Laser Interferometer Space Antenna) should not exhibit
any signs of chaos.Comment: Submitted to Phys. Rev. D. Follow-up to gr-qc/0210042. Figures are
low-resolution in order to satisfy archive size constraints; a
high-resolution version is available at http://www.michaelhartl.com/papers
A Variable Neighborhood Search for the Multi Depot Vehicle Routing Problem with Time Windows
The aim of this paper is to propose an algorithm based on the philosophy of the Variable Neighborhood Search (VNS) to solve Multi Depot Vehicle Routing Problems with Time Windows. The paper has two main contributions. First, from a technical point of view, it presents the first application of a VNS for this problem and several design issues of VNS algorithms are discussed. Second, from a problem oriented point of view the computational results show that the approach is competitive with an existing Tabu Search algorithm with respect to both solution quality and computation time
SMaSH: A Benchmarking Toolkit for Human Genome Variant Calling
Motivation: Computational methods are essential to extract actionable
information from raw sequencing data, and to thus fulfill the promise of
next-generation sequencing technology. Unfortunately, computational tools
developed to call variants from human sequencing data disagree on many of their
predictions, and current methods to evaluate accuracy and computational
performance are ad-hoc and incomplete. Agreement on benchmarking variant
calling methods would stimulate development of genomic processing tools and
facilitate communication among researchers.
Results: We propose SMaSH, a benchmarking methodology for evaluating human
genome variant calling algorithms. We generate synthetic datasets, organize and
interpret a wide range of existing benchmarking data for real genomes, and
propose a set of accuracy and computational performance metrics for evaluating
variant calling methods on this benchmarking data. Moreover, we illustrate the
utility of SMaSH to evaluate the performance of some leading single nucleotide
polymorphism (SNP), indel, and structural variant calling algorithms.
Availability: We provide free and open access online to the SMaSH toolkit,
along with detailed documentation, at smash.cs.berkeley.edu
Sampling-Based Trajectory (re)planning for Differentially Flat Systems: Application to a 3D Gantry Crane
In this paper, a sampling-based trajectory planning algorithm for a
laboratory-scale 3D gantry crane in an environment with static obstacles and
subject to bounds on the velocity and acceleration of the gantry crane system
is presented. The focus is on developing a fast motion planning algorithm for
differentially flat systems, where intermediate results can be stored and
reused for further tasks, such as replanning. The proposed approach is based on
the informed optimal rapidly exploring random tree algorithm (informed RRT*),
which is utilized to build trajectory trees that are reused for replanning when
the start and/or target states change. In contrast to state-of-the-art
approaches, the proposed motion planning algorithm incorporates a linear
quadratic minimum time (LQTM) local planner. Thus, dynamic properties such as
time optimality and the smoothness of the trajectory are directly considered in
the proposed algorithm. Moreover, by integrating the branch-and-bound method to
perform the pruning process on the trajectory tree, the proposed algorithm can
eliminate points in the tree that do not contribute to finding better
solutions. This helps to curb memory consumption and reduce the computational
complexity during motion (re)planning. Simulation results for a validated
mathematical model of a 3D gantry crane show the feasibility of the proposed
approach.Comment: Published at IFAC-PapersOnLine (13th IFAC Symposium on Robot Control
Formation of toxic oligomers of polyQ-expanded Huntingtin by prion-mediated cross-seeding
Manifestation of aggregate pathology in Huntington's disease is thought to be facilitated by a preferential vulnerability of affected brain cells to age-dependent proteostatic decline. To understand how specific cellular backgrounds may facilitate pathologic aggregation, we utilized the yeast model in which polyQ-expanded Huntingtin forms aggregates only when the endogenous prion-forming protein Rnq1 is in its amyloid-like prion [PIN+] conformation. We employed optogenetic clustering of polyQ protein as an orthog-onal method to induce polyQ aggregation in prion-free [pin-] cells. Optogenetic aggregation circumvented the prion requirement for the formation of detergent-resistant polyQ inclusions but bypassed the formation of toxic polyQ oligomers, which accumulated specifically in [PIN+] cells. Reconstitution of aggregation in vitro suggested that these polyQ oligomers formed through direct templating on Rnq1 prions. These findings shed light on the mechanism of prion-mediated formation of oligomers, which may play a role in triggering polyQ pathology in the patient brain
- …