1,282 research outputs found

    Untenured Professors\u27 Rights to Reappointment

    Get PDF
    We are now in a period during which present tenure systems are undergoing close scrutiny by the public and the legislatures. Some of those now criticizing universities would like to see these institutions of higher learning placed under greater accountability to the public. It is especially during this period that university boards and administrators must exercise extreme care to eliminate abuses of tenure and pre- vent any new abuses from occurring, in order to avoid unnecessary criticism from those who wish to embarrass the supporters of that academic freedom under which our universities have flourished. To further complicate this controversy on the retention of academic tenure, a new movement has arisen in universities supported by public funds, for tenure rights to be granted to non-tenured faculty, thus nullifying the distinction between tenured and non-tenured personnel

    Specialization in Criminal Law

    Full text link

    Hydrodynamic guiding for addressing subsets of immobilized cells and molecules in microfluidic systems

    Get PDF
    BACKGROUND: The interest in microfluidics and surface patterning is increasing as the use of these technologies in diverse biomedical applications is substantiated. Controlled molecular and cellular surface patterning is a costly and time-consuming process. Methods for keeping multiple separate experimental conditions on a patterned area are, therefore, needed to amplify the amount of biological information that can be retrieved from a patterned surface area. We describe, in three examples of biomedical applications, how this can be achieved in an open microfluidic system, by hydrodynamically guiding sample fluid over biological molecules and living cells immobilized on a surface. RESULTS: A microfluidic format of a standard assay for cell-membrane integrity showed a fast and dose-dependent toxicity of saponin on mammalian cells. A model of the interactions of human mononuclear leukocytes and endothelial cells was established. By contrast to static adhesion assays, cell-cell adhesion in this dynamic model depended on cytokine-mediated activation of both endothelial and blood cells. The microfluidic system allowed the use of unprocessed blood as sample material, and a specific and fast immunoassay for measuring the concentration of C-reactive protein in whole blood was demonstrated. CONCLUSION: The use of hydrodynamic guiding made multiple and dynamic experimental conditions on a small surface area possible. The ability to change the direction of flow and produce two-dimensional grids can increase the number of reactions per surface area even further. The described microfluidic system is widely applicable, and can take advantage of surfaces produced by current and future techniques for patterning in the micro- and nanometer scale

    Aerosol Absorption: Progress Towards Global and Regional Constraints

    Get PDF
    Some aerosols absorb solar radiation, altering cloud properties, atmospheric stability and circulation dynamics, and the water cycle. Here we review recent progress towards global and regional constraints on aerosol absorption from observations and modeling, considering physical properties and combined approaches crucial for understanding the total (natural and anthropogenic) influences of aerosols on the climate. We emphasize developments in black carbon absorption alteration due to coating and ageing, brown carbon characterization, dust composition, absorbing aerosol above cloud, source modeling and size distributions, and validation of high-resolution modeling against a range of observations. Both observations and modeling of total aerosol absorption, absorbing aerosol optical depths and single scattering albedo, as well as the vertical distribution of atmospheric absorption, still suffer from uncertainties and unknowns significant for climate applications. We offer a roadmap of developments needed to bring the field substantially forward

    Sensitivity Analysis of Cirrus Cloud Properties from High-Resolution Infrared Spectra. Part I: Methodology and Synthetic Cirrus

    Get PDF
    A set of simulated high-resolution infrared (IR) emission spectra of synthetic cirrus clouds is used to perform a sensitivity analysis of top-of-atmosphere (TOA) radiance to cloud parameters. Principal component analysis (PCA) is applied to assess the variability of radiance across the spectrum with respect to microphysical and bulk cloud quantities. These quantities include particle shape, effective radius (reff), ice water path (IWP), cloud height Zcld and thickness ΔZcld, and vertical profiles of temperature T(z) and water vapor mixing ratio w(z). It is shown that IWP variations in simulated cloud cover dominate TOA radiance variability. Cloud height and thickness, as well as T(z) variations, also contribute to considerable TOA radiance variability. The empirical orthogonal functions (EOFs) of radiance variability show both similarities and differences in spectral shape and magnitude of variability when one physical quantity or another is being modified. In certain cases, it is possible to identify the EOF that represents variability with respect to one or more physical quantities. In other instances, similar EOFs result from different sets of physical quantities, emphasizing the need for multiple, independent data sources to retrieve cloud parameters. When analyzing a set of simulated spectra that include joint variations of IWP, reff, and w(z) across a realistic range of values, the first two EOFs capture approximately 92%–97% and 2%–6% of the total variance, respectively; they reflect the combined effect of IWP and reff. The third EOF accounts for only 1%–2% of the variance and resembles the EOF from analysis of spectra where only w(z) changes. Sensitivity with respect to particle size increases significantly for reff several tens of microns or less. For small-particle reff, the sensitivity with respect to the joint variation of IWP, reff, and w(z) is well approximated by the sum of the sensitivities with respect to variations in each of three quantities separately

    Type IIB Colliding Plane Waves

    Full text link
    Four-dimensional colliding plane wave (CPW) solutions have played an important role in understanding the classical non-linearities of Einstein's equations. In this note, we investigate CPW solutions in 2n+22n+2--dimensional Einstein gravity with a n+1n+1-form flux. By using an isomorphism with the four-dimensional problem, we construct exact solutions analogous to the Szekeres vacuum solution in four dimensions. The higher-dimensional versions of the Khan-Penrose and Bell-Szekeres CPW solutions are studied perturbatively in the vicinity of the light-cone. We find that under small perturbations, a curvature singularity is generically produced, leading to both space-like and time-like singularities. For n=4n=4, our results pertain to the collision of two ten-dimensional type IIB Blau - Figueroa o'Farrill - Hull - Papadopoulos plane waves.Comment: 20+10 pages, 2 figures, uses JHEP3.cls; v2: refs [3,10,22] corrected, remark added below (3.9) on inexistence of conformally flat CPW in our ansatz, final version to appear in JHE

    Transmitted Drug Resistance in the CFAR Network of Integrated Clinical Systems Cohort: Prevalence and Effects on Pre-Therapy CD4 and Viral Load

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) genomes often carry one or more mutations associated with drug resistance upon transmission into a therapy-naïve individual. We assessed the prevalence and clinical significance of transmitted drug resistance (TDR) in chronically-infected therapy-naïve patients enrolled in a multi-center cohort in North America. Pre-therapy clinical significance was quantified by plasma viral load (pVL) and CD4+ cell count (CD4) at baseline. Naïve bulk sequences of HIV-1 protease and reverse transcriptase (RT) were screened for resistance mutations as defined by the World Health Organization surveillance list. The overall prevalence of TDR was 14.2%. We used a Bayesian network to identify co-transmission of TDR mutations in clusters associated with specific drugs or drug classes. Aggregate effects of mutations by drug class were estimated by fitting linear models of pVL and CD4 on weighted sums over TDR mutations according to the Stanford HIV Database algorithm. Transmitted resistance to both classes of reverse transcriptase inhibitors was significantly associated with lower CD4, but had opposing effects on pVL. In contrast, position-specific analyses of TDR mutations revealed substantial effects on CD4 and pVL at several residue positions that were being masked in the aggregate analyses, and significant interaction effects as well. Residue positions in RT with predominant effects on CD4 or pVL (D67 and M184) were re-evaluated in causal models using an inverse probability-weighting scheme to address the problem of confounding by other mutations and demographic or risk factors. We found that causal effect estimates of mutations M184V/I ( pVL) and D67N/G ( and pVL) were compensated by K103N/S and K219Q/E/N/R. As TDR becomes an increasing dilemma in this modern era of highly-active antiretroviral therapy, these results have immediate significance for the clinical management of HIV-1 infections and our understanding of the ongoing adaptation of HIV-1 to human populations
    • …
    corecore