15,490 research outputs found
The effects of financial deregulation on inflation, velocity growth, and monetary targeting
Depository Institutions Deregulation and Monetary Control Act of 1980 ; Monetary policy - United States ; Inflation (Finance) ; Velocity of money
Are net discount ratios stationary?: the implications for present value calculations
Wages ; Interest rates
Exploratory analysis of high-resolution power interruption data reveals spatial and temporal heterogeneity in electric grid reliability
Modern grid monitoring equipment enables utilities to collect detailed
records of power interruptions. These data are aggregated to compute publicly
reported metrics describing high-level characteristics of grid performance. The
current work explores the depth of insights that can be gained from public
data, and the implications of losing visibility into heterogeneity in grid
performance through aggregation. We present an exploratory analysis examining
three years of high-resolution power interruption data collected by archiving
information posted in real-time on the public-facing website of a utility in
the Western United States. We report on the size, frequency and duration of
individual power interruptions, and on spatio-temporal variability in aggregate
reliability metrics. Our results show that metrics of grid performance can vary
spatially and temporally by orders of magnitude, revealing heterogeneity that
is not evidenced in publicly reported metrics. We show that limited access to
granular information presents a substantive barrier to conducting detailed
policy analysis, and discuss how more widespread data access could help to
answer questions that remain unanswered in the literature to date. Given open
questions about whether grid performance is adequate to support societal needs,
we recommend establishing pathways to make high-resolution power interruption
data available to support policy research.Comment: Journal submission (in review), 22 pages, 8 figures, 1 tabl
Generalized Ohm\u27s Law In A 3-D Reconnection Experiment
We report the measurement of non-ideal terms of the generalized Ohm\u27s law at a reconnection site of a weakly collisional laboratory magnetohydrodynamic plasma. Results show that the Hall term dominates the measured terms; resistive and electron inertia terms are small. We suggest that electron pressure (not measured) supports the observed quasistatic reconnection rate, and that anomalous resistivity, while not ruled out, is not required to account for the results
Three-Dimensional Structure Of Magnetic Reconnection In A Laboratory Plasma
The local three-dimensional structure of magnetic reconnection has been measured for the first time in a magnetohydrodynamic (MHD) laboratory plasma at the Swarthmore Spheromak Experiment. An array of 600 magnetic probes which resolve ion inertial length and MHD time scale dynamics on a single shot basis measured the magnetic structure of partial spheromak merging events. Counter-helicity spheromaks merge rapidly, and reconnection activity clearly self-generates a local component of B which breaks the standard 2D symmetry at the ion inertial scale. Consistent with prior results, no reconnection is observed for co-helicity merging
Statistical Analysis of the AIAA Drag Prediction Workshop CFD Solutions
The first AIAA Drag Prediction Workshop (DPW), held in June 2001, evaluated the results from an extensive N-version test of a collection of Reynolds-Averaged Navier-Stokes CFD codes. The code-to-code scatter was more than an order of magnitude larger than desired for design and experimental validation of cruise conditions for a subsonic transport configuration. The second AIAA Drag Prediction Workshop, held in June 2003, emphasized the determination of installed pylon-nacelle drag increments and grid refinement studies. The code-to-code scatter was significantly reduced compared to the first DPW, but still larger than desired. However, grid refinement studies showed no significant improvement in code-to-code scatter with increasing grid refinement. The third AIAA Drag Prediction Workshop, held in June 2006, focused on the determination of installed side-of-body fairing drag increments and grid refinement studies for clean attached flow on wing alone configurations and for separated flow on the DLR-F6 subsonic transport model. This report compares the transonic cruise prediction results of the second and third workshops using statistical analysis
Exploring the cross correlations and autocorrelations of the ULF indices and incorporating the ULF indices into the systems science of the solar windâdriven magnetosphere
The ULF magnetospheric indices S gr , S geo , T gr , and T geo are examined and correlated with solar wind variables, geomagnetic indices, and the multispacecraftâaveraged relativisticâelectron flux F in the magnetosphere. The ULF indices are detrended by subtracting off sine waves with 24 h periods to form S grd , S geod , T grd , and T geod . The detrending improves correlations. Autocorrelationâfunction analysis indicates that there are still strong 24 h period nonsinusoidal signals in the indices which should be removed in future. Indications are that the groundâbased indices S grd and T grd are more predictable than the geosynchronous indices S geod and T geod . In the analysis, a difference index â S mag âââ S grd â 0.693 S geod is derived: the time integral of â S mag has the highest ULF index correlation with the relativisticâelectron flux F . In systemsâscience fashion, canonical correlation analysis (CCA) is used to correlate the relativisticâelectron flux simultaneously with the time integrals of (a) the solar wind velocity, (b) the solar wind number density, (c) the level of geomagnetic activity, (d) the ULF indices, and (e) the type of solar wind plasma (coronal hole versus streamer belt): The time integrals of the solar wind density and the type of plasma have the highest correlations with F . To create a solar windâEarth system of variables, the two indices S grd and S geod are combined with seven geomagnetic indices; from this, CCA produces a canonical Earth variable that is matched with a canonical solar wind variable. Very high correlations ( r corr â=â0.926) between the two canonical variables are obtained. Key Points ULF indices contain nonsinusoidal periodic signals in universal time ULF indices are not the strongest correlator with radiation belt electron fluxes ULF indices were integrated into a mathematical system science of magnetospherePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108067/1/jgra51050.pd
- âŠ