11 research outputs found

    Molecular and Functional Properties of Transmitted HIV-1 Envelope Variants: A Dissertation

    Get PDF
    In 2008 the Nobel Prize in Physiology or Medicine was awarded to the co-discoverers of the Human Immunodeficiency Virus Type 1 (HIV-1), the causative agent of Acquired Immunodeficiency Syndrome (AIDS). This award acknowledged the enormous worldwide impact of the HIV-1/AIDS pandemic and the importance of research aimed at halting its spread. Since the syndrome was first recognized, 25 million people have succumbed to AIDS and over 33 million are currently infected with HIV-1 (www.unaids.org). The most effective strategy for ending the pandemic is the creation of a prophylactic vaccine. Yet, to date, all efforts at HIV-1 vaccine design have met with very limited success. The consistent failures of vaccine candidates stem in large part from the unprecedented diversity of HIV-1. Among the novel theories of vaccine design put forward to address this diversity is the targeted vaccine approach. This proposal is based on the finding that mucosal transmission of HIV-1, the most prevalent form, occurs across a selective bottleneck such that typically only a single (or a few) variants of the viral swarm present in a donor are passed to the recipient. While the mechanisms controlling the selection are largely unknown, the targeted vaccine approach postulates that once they are identified, we can utilize this understanding to design vaccines specifically targeted to the characteristics shared by the rare, mucosally transmissible HIV-1 variants. The studies described in this work were conducted to improve our understanding of the factors influencing viral variant selection during mother-to-child-transmission of HIV-1, a route of mucosal transmission which has globally become the leading cause of child infection. A unique panel was generated, consisting of nearly 300 HIV-1 envelope genes cloned from infected mother-infant pairs. Extensive characterization of the genotypes, phenotypes and phylogeny of these clones was then done to identify attributes differentiating early infant from maternal variants. Low genetic diversity of HIV-1 envelope variants was detected in early infant samples, suggesting a bottleneck and active selection of variants for transmission. Transmitted variants did not differ from non-transmitted variants in CD4 and CCR5 use. Infant isolates replicated poorly in macrophages; a cell subtype hypothesized to be important in the establishment of infection. The sensitivity of infant envelope variants to neutralization by a panel of monoclonal antibodies, heterologous and autologous plasmas and HIV-1 entry inhibitors varied. Most intriguingly, envelopes cloned from infants infected during delivery exhibited a faster entry phenotype than maternal isolates. Together, these findings provide further insight into viral variant selection during mother-to-child transmission. Identification of properties shared by mucosally transmitted viral variants may allow them to be selectively targeted, resulting in improved methods for preventing HIV-1 transmission

    Immunogenicity and protection efficacy of subunit-based smallpox vaccines using variola major antigens

    Get PDF
    The viral strain responsible for smallpox infection is variola major (VARV). As a result of the successful eradication of smallpox with the vaccinia virus (VACV), the general population is no longer required to receive a smallpox vaccine, and will have no protection against smallpox. This lack of immunity is a concern due to the potential for use of smallpox as a biological weapon. Considerable progress has been made in the development of subunit-based smallpox vaccines resulting from the identification of VACV protective antigens. It also offers the possibility of using antigens from VARV to formulate the next generation subunit-based smallpox vaccines. Here, we show that codon-optimized DNA vaccines expressing three VARV antigens (A30, B7 and F8) and their recombinant protein counterparts elicited high-titer, cross-reactive, VACV neutralizing antibody responses in mice. Vaccinated mice were protected from intraperitoneal and intranasal challenges with VACV. These results suggest the feasibility of a subunit smallpox vaccine based on VARV antigen sequences to induce immunity against poxvirus infection

    Pilot study on the immunogenicity of paired Env immunogens from mother-to-child transmitted HIV-1 isolates

    Full text link
    Recent studies have reported that founder viruses play unique roles in establishing HIV-1 infection. Understanding the biological and immunological features of envelope glycoproteins (Env) from such viruses may facilitate the development of effective vaccines against HIV-1. In this report, we evaluated the immunogenicity of gp120 immunogens from two pairs of clade B and two pairs of clade C mother-to-child transmitted (MTCT) HIV-1 variants that had various levels of sensitivity to broadly neutralizing monoclonal antibodies. Individual gp120 DNA and protein vaccines were produced from each of the eight MTCT Env antigens included in the current study. Rabbits were immunized with these gp120 immunogens by the DNA prime-protein boost approach. High level Env-specific antibody responses were elicited by all MTCT gp120 immunogens. However, their abilities to elicit neutralizing antibody (NAb) responses differed and those from relatively neutralization-resistant variants tended to be more effective in eliciting broader NAb. Results of this pilot study indicated that not all MTCT Env proteins have the same potential to elicit NAb. Understanding the mechanism(s) behind such variation may provide useful information in formulating the next generation of HIV vaccines

    Neutralizing Antibodies and CD8(+) T Lymphocytes both Contribute to Immunity to Adenovirus Serotype 5 Vaccine Vectors

    Full text link
    The high prevalence of preexisting immunity to adenovirus serotype 5 (Ad5) in human populations will likely limit the immunogenicity and clinical utility of recombinant Ad5 vector-based vaccines for human immunodeficiency virus type 1 and other pathogens. Ad5-specific neutralizing antibodies (NAbs) are thought to contribute substantially to anti-Ad5 immunity, but the potential importance of Ad5-specific T lymphocytes in this setting has not been fully characterized. Here we assess the relative contributions of Ad5-specific humoral and cellular immune responses in blunting the immunogenicity of a rAd5-Env vaccine in mice. Adoptive transfer of Ad5-specific NAbs resulted in a dramatic abrogation of Env-specific immune responses following immunization with rAd5-Env. Interestingly, adoptive transfer of Ad5-specific CD8(+) T lymphocytes also resulted in a significant and durable suppression of rAd5-Env immunogenicity. These data demonstrate that NAbs and CD8(+) T lymphocytes both contribute to immunity to Ad5. Novel adenovirus vectors that are currently being developed to circumvent the problem of preexisting anti-Ad5 immunity should therefore be designed to evade both humoral and cellular Ad5-specific immune responses

    Recruitment and expansion of dendritic cells in vivo potentiate the immunogenicity of plasmid DNA vaccines

    Full text link
    DCs are critical for priming adaptive immune responses to foreign antigens. However, the utility of harnessing these cells in vivo to optimize the immunogenicity of vaccines has not been fully explored. Here we investigate a novel vaccine approach that involves delivering synergistic signals that both recruit and expand DC populations at the site of antigen production. Intramuscular injection of an unadjuvanted HIV-1 envelope (env) DNA vaccine recruited few DCs to the injection site and elicited low-frequency, env-specific immune responses in mice. Coadministration of plasmids encoding the chemokine macrophage inflammatory protein-1α (MIP-1α) and the DC-specific growth factor fms-like tyrosine kinase 3 ligand with the DNA vaccine resulted in the recruitment, expansion, and activation of large numbers of DCs at the site of inoculation. Consistent with these findings, coadministration of these plasmid cytokines also markedly augmented DNA vaccine--–elicited cellular and humoral immune responses and increased protective efficacy against challenge with recombinant vaccinia virus. These data suggest that the availability of mature DCs at the site of inoculation is a critical rate-limiting factor for DNA vaccine immunogenicity. Synergistic recruitment and expansion of DCs in vivo may prove a practical strategy for overcoming this limitation and potentiating immune responses to vaccines as well as other immunotherapeutic strategies

    Immunogenicity of Recombinant Fiber-Chimeric Adenovirus Serotype 35 Vector-Based Vaccines in Mice and Rhesus Monkeys

    Full text link
    Preexisting immunity to adenovirus serotype 5 (Ad5) has been shown to suppress the immunogenicity of recombinant Ad5 (rAd5) vector-based vaccines for human immunodeficiency virus type 1 (HIV-1) in both preclinical studies and clinical trials. A potential solution to this problem is to utilize rAd vectors derived from rare Ad serotypes, such as Ad35. However, rAd35 vectors have appeared less immunogenic than rAd5 vectors in preclinical studies to date. In this study, we explore the hypothesis that the differences in immunogenicity between rAd5 and rAd35 vectors may be due in part to differences between the fiber proteins of these viruses. We constructed capsid chimeric rAd35 vectors containing the Ad5 fiber knob (rAd35k5) and compared the immunogenicities of rAd5, rAd35k5, and rAd35 vectors expressing simian immunodeficiency virus Gag and HIV-1 Env in mice and rhesus monkeys. In vitro studies demonstrated that rAd35k5 vectors utilized the Ad5 receptor CAR rather than the Ad35 receptor CD46. In vivo studies showed that rAd35k5 vectors were more immunogenic than rAd35 vectors in both mice and rhesus monkeys. These data suggest that the Ad5 fiber knob contributes substantially to the immunogenicity of rAd vectors. Moreover, these studies demonstrate that capsid chimeric rAd vectors can be constructed to combine beneficial immunologic and serologic properties of different Ad serotypes

    Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity

    Full text link
    The high prevalence of pre-existing immunity to adenovirus serotype 5 (Ad5) in human populations may substantially limit the immunogenicity and clinical utility of recombinant Ad5 vector-based vaccines for HIV-1 and other pathogens. A potential solution to this problem is to use vaccine vectors derived from adenovirus (Ad) serotypes that are rare in humans, such as Ad35. However, cross-reactive immune responses between heterologous Ad serotypes have been described and could prove a major limitation of this strategy. In particular, the extent of immunologic cross-reactivity between Ad5 and Ad35 has not previously been determined. In this study we investigate the impact of pre-existing anti-Ad5 immunity on the immunogenicity of candidate rAd5 and rAd35 vaccines expressing SIV Gag in mice. Anti-Ad5 immunity at levels typically found in humans dramatically blunted the immunogenicity of rAd5-Gag. In contrast, even high levels of anti-Ad5 immunity did not substantially suppress Gag-specific cellular immune responses elicited by rAd35-Gag. Low levels of cross-reactive Ad5/Ad35-specific CD4(+) T lymphocyte responses were observed, but were insufficient to suppress vaccine immunogenicity. These data demonstrate the potential utility of Ad35 as a candidate vaccine vector that is minimally suppressed by anti-Ad5 immunity. Moreover, these studies suggest that using Ad vectors derived from immunologically distinct serotypes may be an effective and general strategy to overcome the suppressive effects of pre-existing anti-Ad immunit

    Neutralizing antibodies to adenovirus serotype 5 vaccine vectors are directed primarily against the adenovirus hexon protein

    Full text link
    The utility of recombinant adenovirus serotype 5 (rAd5) vector-based vaccines for HIV-1 and other pathogens will likely be limited by the high prevalence of pre-existing Ad5-specific neutralizing Abs (NAbs) in human populations. However, the immunodominant targets of Ad5-specific NAbs in humans remain poorly characterized. In this study, we assess the titers and primary determinants of Ad5-specific NAbs in individuals from both the United States and the developing world. Importantly, median Ad5-specific NAb titers were >10-fold higher in sub-Saharan Africa compared with the United States. Moreover, hexon-specific NAb titers were 4- to 10-fold higher than fiber-specific NAb titers in these cohorts by virus neutralization assays using capsid chimeric viruses. We next performed adoptive transfer studies in mice to evaluate the functional capacity of hexon- and fiber-specific NAbs to suppress the immunogenicity of a prototype rAd5-Env vaccine. Hexon-specific NAbs were remarkably efficient at suppressing Env-specific immune responses elicited by the rAd5 vaccine. In contrast, fiber-specific NAbs exerted only minimal suppressive effects on rAd5 vaccine immunogenicity. These data demonstrate that functionally significant Ad5-specific NAbs are directed primarily against the Ad5 hexon protein in both humans and mice. These studies suggest a potential strategy for engineering novel Ad5 vectors to evade dominant Ad5-specific NAb
    corecore