283 research outputs found
Abundances of Baade's Window Giants from Keck/HIRES Spectra: II. The Alpha- and Light Odd Elements
We report detailed chemical abundance analysis of 27 RGB stars towards the
Galactic bulge in Baade's Window for elements produced by massive stars: O, Na,
Mg, Al, Si, Ca and Ti. All of these elements are overabundant in the bulge
relative to the disk, especially Mg, indicating that the bulge is enhanced in
Type~II supernova ejecta and most likely formed more rapidly than the disk. We
attribute a rapid decline of [O/Fe] to metallicity-dependent yields of oxygen
in massive stars, perhaps connected to the Wolf-Reyet phenomenon. he explosive
nucleosynthesis alphas, Si, Ca and Ti, possess identical trends with [Fe/H],
consistent with their putative common origin. We note that different behaviors
of hydrostatic and explosive alpha elements can be seen in the stellar
abundances of stars in Local Group dwarf galaxies. We also attribute the
decline of Si,Ca and Ti relative to Mg, to metallicity- dependent yields for
the explosive alpha elements from Type~II supernovae. The starkly smaller
scatter of [/Fe] with [Fe/H] in the bulge, as compared to the halo, is
consistent with expected efficient mixing for the bulge. The metal-poor bulge
[/Fe] ratios are higher than ~80% of the halo. If the bulge formed from
halo gas, the event occured before ~80% of the present-day halo was formed. The
lack of overlap between the thick and thin disk composition with the bulge does
not support the idea that the bulge was built by a thickening of the disk
driven by the bar. The trend of [Al/Fe] is very sensitive to the chemical
evolution environment. A comparison of the bulge, disk and Sgr dSph galaxy
shows a range of ~0.7 dex in [Al/Fe] at a given [Fe/H], presumably due to a
range of Type~II/Type~Ia supernova ratios in these systems.Comment: 51 pages, 6 tables, 27 figures, submitte
A monument to the player: Preserving a landscape of socio-cultural capital in the transitional MMORPG
This is the pre-print version of the Article. The official published version can be accessed from the links below - Copyright @ 2012 Taylor & Francis LtdMassively multiplayer online role-playing games (MMORPGs) produce dynamic socio-ludic worlds that nurture both culture and gameplay to shape experiences. Despite the persistent nature of these games, however, the virtual spaces that anchor these worlds may not always be able to exist in perpetuity. Encouraging a community to migrate from one space to another is a challenge now facing some game developers. This paper examines the case of Guild WarsÂź and its âHall of Monumentsâ, a feature that bridges the accomplishments of players from the current game to the forthcoming sequel. Two factor analyses describe the perspectives of 105 and 187 self-selected participants. The results reveal four factors affecting attitudes towards the feature, but they do not strongly correlate with existing motivational frameworks, and significant differences were found between different cultures within the game. This informs a discussion about the implications and facilitation of such transitions, investigating themes of capital, value perception and assumptive worlds. It is concluded that the way subcultures produce meaning needs to be considered when attempting to preserve the socio-cultural landscape
Differences between regular and random order of updates in damage spreading simulations
We investigate the spreading of damage in the three-dimensional Ising model
by means of large-scale Monte-Carlo simulations. Within the Glauber dynamics we
use different rules for the order in which the sites are updated. We find that
the stationary damage values and the spreading temperature are different for
different update order. In particular, random update order leads to larger
damage and a lower spreading temperature than regular order. Consequently,
damage spreading in the Ising model is non-universal not only with respect to
different update algorithms (e.g. Glauber vs. heat-bath dynamics) as already
known, but even with respect to the order of sites.Comment: final version as published, 4 pages REVTeX, 2 eps figures include
Selinexor, a novel selective inhibitor of nuclear export, reduces SARS-CoV-2 infection and protects the respiratory system in vivo
The novel coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the recent global pandemic. The nuclear export protein (XPO1) has a direct role in the export of SARS-CoV proteins including ORF3b, ORF9b, and nucleocapsid. Inhibition of XPO1 induces anti-inflammatory, anti-viral, and antioxidant pathways. Selinexor is an FDA-approved XPO1 inhibitor. Through bioinformatics analysis, we predicted nuclear export sequences in the ACE-2 protein and confirmed by in vitro testing that inhibition of XPO1 with selinexor induces nuclear localization of ACE-2. Administration of selinexor inhibited viral infection prophylactically as well as therapeutically in vitro. In a ferret model of COVID-19, selinexor treatment reduced viral load in the lungs and protected against tissue damage in the nasal turbinates and lungs in vivo. Our studies demonstrated that selinexor downregulated the pro-inflammatory cytokines IL-1ÎČ, IL-6, IL-10, IFN-Îł, TNF-α, and GMCSF, commonly associated with the cytokine storm observed in COVID-19 patients. Our findings indicate that nuclear export is critical for SARS-CoV-2 infection and for COVID-19 pathology and suggest that inhibition of XPO1 by selinexor could be a viable anti-viral treatment option
IRAS versus POTENT Density Fields on Large Scales: Biasing and Omega
The galaxy density field as extracted from the IRAS 1.2 Jy redshift survey is
compared to the mass density field as reconstructed by the POTENT method from
the Mark III catalog of peculiar velocities. The reconstruction is done with
Gaussian smoothing of radius 12 h^{-1}Mpc, and the comparison is carried out
within volumes of effective radii 31-46 h^{-1}Mpc, containing approximately
10-26 independent samples. Random and systematic errors are estimated from
multiple realizations of mock catalogs drawn from a simulation that mimics the
observed density field in the local universe. The relationship between the two
density fields is found to be consistent with gravitational instability theory
in the mildly nonlinear regime and a linear biasing relation between galaxies
and mass. We measure beta = Omega^{0.6}/b_I = 0.89 \pm 0.12 within a volume of
effective radius 40 h^{-1}Mpc, where b_I is the IRAS galaxy biasing parameter
at 12 h^{-1}Mpc. This result is only weakly dependent on the comparison volume,
suggesting that cosmic scatter is no greater than \pm 0.1. These data are thus
consistent with Omega=1 and b_I\approx 1. If b_I>0.75, as theoretical models of
biasing indicate, then Omega>0.33 at 95% confidence. A comparison with other
estimates of beta suggests scale-dependence in the biasing relation for IRAS
galaxies.Comment: 35 pages including 10 figures, AAS Latex, Submitted to The
Astrophysical Journa
Non-Abelian Anyons and Topological Quantum Computation
Topological quantum computation has recently emerged as one of the most
exciting approaches to constructing a fault-tolerant quantum computer. The
proposal relies on the existence of topological states of matter whose
quasiparticle excitations are neither bosons nor fermions, but are particles
known as {\it Non-Abelian anyons}, meaning that they obey {\it non-Abelian
braiding statistics}. Quantum information is stored in states with multiple
quasiparticles, which have a topological degeneracy. The unitary gate
operations which are necessary for quantum computation are carried out by
braiding quasiparticles, and then measuring the multi-quasiparticle states. The
fault-tolerance of a topological quantum computer arises from the non-local
encoding of the states of the quasiparticles, which makes them immune to errors
caused by local perturbations. To date, the only such topological states
thought to have been found in nature are fractional quantum Hall states, most
prominently the \nu=5/2 state, although several other prospective candidates
have been proposed in systems as disparate as ultra-cold atoms in optical
lattices and thin film superconductors. In this review article, we describe
current research in this field, focusing on the general theoretical concepts of
non-Abelian statistics as it relates to topological quantum computation, on
understanding non-Abelian quantum Hall states, on proposed experiments to
detect non-Abelian anyons, and on proposed architectures for a topological
quantum computer. We address both the mathematical underpinnings of topological
quantum computation and the physics of the subject using the \nu=5/2 fractional
quantum Hall state as the archetype of a non-Abelian topological state enabling
fault-tolerant quantum computation.Comment: Final Accepted form for RM
Bright Planetary Nebulae and their Progenitors in Galaxies Without Star Formation
We present chemical abundances for planetary nebulae in M32, NGC 185, and NGC
205 based upon spectroscopy obtained at the Canada-France-Hawaii Telescope
using the Multi-Object Spectrograph. From these and similar data compiled from
the literature for other Local Group galaxies, we consider the origin and
evolution of the stellar progenitors of bright planetary nebulae in galaxies
where star formation ceased long ago. The ratio of neon to oxygen abundances in
bright planetary nebulae is either identical to that measured in the
interstellar medium of star-forming dwarf galaxies or at most changed by a few
percent, indicating that neither abundance is significantly altered as a result
of the evolution of their stellar progenitors. Several planetary nebulae appear
to have dredged up oxygen, but these are the exception, not the rule. The
progenitors of bright planetary nebulae typically enhance their original helium
abundances by less than 50%. In contrast, nitrogen enhancements can reach
factors of 100. However, nitrogen often shows little or no enhancement,
suggesting that nitrogen enrichment is a random process. The helium, oxygen,
and neon abundances argue that the typical bright planetary nebulae in all of
the galaxies considered here are the progeny of stars with initial masses of
approximately 1.5 Msun or less, based upon the nucleosynthesis predictions of
current theoretical models. These models, however, are unable to explain the
nitrogen enrichment or its scatter. Similar conclusions hold for the bright
planetary nebulae in galaxies with ongoing star formation. Thus, though
composition varies significantly, there is unity in the sense that the
progenitors of typical bright planetary nebulae appear to have undergone
similar physical processes. (Abridged)Comment: accepted for publication in the Astrophysical Journa
Biomarker-driven phenotyping in Parkinson's disease: A translational missing link in disease-modifying clinical trials
Past clinical trials of putative neuroprotective therapies have targeted PD as a single pathogenic disease entity. From an Oslerian clinicopathological perspective, the wide complexity of PD converges into Lewy bodies and justifies a reductionist approach to PD: A single-mechanism therapy can affect most of those sharing the classic pathological hallmark. From a systems-biology perspective, PD is a group of disorders that, while related by sharing the feature of nigral dopamine-neuron degeneration, exhibit unique genetic, biological, and molecular abnormalities, which probably respond differentially to a given therapeutic approach, particularly for strategies aimed at neuroprotection. Under this model, only biomarker-defined, homogenous subtypes of PD are likely to respond optimally to therapies proven to affect the biological processes within each subtype. Therefore, we suggest that precision medicine applied to PD requires a reevaluation of the biomarker-discovery effort. This effort is currently centered on correlating biological measures to clinical features of PD and on identifying factors that predict whether various prodromal states will convert into the classical movement disorder. We suggest, instead, that subtyping of PD requires the reverse view, where abnormal biological signals (i.e., biomarkers), rather than clinical definitions, are used to define disease phenotypes. Successful development of disease-modifying strategies will depend on how relevant the specific biological processes addressed by an intervention are to the pathogenetic mechanisms in the subgroup of targeted patients. This precision-medicine approach will likely yield smaller, but well-defined, subsets of PD amenable to successful neuroprotection.Fil: Espay, Alberto J.. University of Cincinnati; Estados UnidosFil: Schwarzschild, Michael A.. Massachusetts General Hospital; Estados UnidosFil: Tanner, Caroline M.. University of California; Estados UnidosFil: Fernandez, Hubert H.. Cleveland Clinic; Estados UnidosFil: Simon, David K.. Harvard Medical School; Estados UnidosFil: Leverenz, James B.. Cleveland Clinic; Estados UnidosFil: Merola, Aristide. University of Cincinnati; Estados UnidosFil: Chen Plotkin, Alice. University of Pennsylvania; Estados UnidosFil: Brundin, Patrik. Van Andel Research Institute. Center for Neurodegenerative Science; Estados UnidosFil: Kauffman, Marcelo Andres. Universidad Austral; Argentina. Universidad Austral. Facultad de Ciencias BiomĂ©dicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos MejĂa"; ArgentinaFil: Erro, Roberto. Universita di Verona; Italia. University College London; Reino UnidoFil: Kieburtz, Karl. University of Rochester Medical Center; Estados UnidosFil: Woo, Daniel. University of Cincinnati; Estados UnidosFil: Macklin, Eric A.. Massachusetts General Hospital; Estados UnidosFil: Standaert, David G.. University of Alabama at Birmingahm; Estados UnidosFil: Lang, Anthony E.. University of Toronto; Canad
Cosmology in the Next Millennium: Combining MAP and SDSS Data to Constrain Inflationary Models
The basic cosmological parameters and the primordial power spectrum together
completely specify predictions for the cosmic microwave background radiation
anisotropy and large scale structure. Here we show how we can strongly
constrain both and the cosmological parameters by combining the data
from the Microwave Anisotropy Probe (MAP) and the galaxy redshift survey from
the Sloan Digital Sky Survey (SDSS). We allow to be a free function,
and thus probe features in the primordial power spectrum on all scales. The
primordial power spectrum in 20 steps in to Mpc can
be determined to accuracy for Mpc, and to accuracy for Mpc. The uncertainty in the primordial
power spectrum increases by a factor up to 3 on small scales if we solve
simultaneously for the dimensionless Hubble constant , the cosmological
constant , the baryon fraction , the reionization optical
depth , and the effective bias between the matter density field and
the redshift space galaxy density field . Alternately, if we
restrict to be a power law, we find that inclusion of the SDSS data
breaks the degeneracy between the amplitude of the power spectrum and the
optical depth inherent in the MAP data, significantly reduces the uncertainties
in the determination of the matter density and the cosmological constant, and
allows a determination of the galaxy bias parameter. Thus, combining the MAP
and SDSS data allows the independent measurement of important cosmological
parameters, and a measurement of the primordial power spectrum independent of
inflationary models, giving us valuable information on physics in the early
Universe, and providing clues to the correct inflationary model.Comment: Substantial revisions to quantitative results as a result of more
accurate calculation of derivatives; these new numerical results strengthen
but do not change our qualitative results. Minor changes in wording. Several
references added. Final version, to appear in ApJ January 1, 1999 issue, Vol.
510 #
``Sum over Surfaces'' form of Loop Quantum Gravity
We derive a spacetime formulation of quantum general relativity from
(hamiltonian) loop quantum gravity. In particular, we study the quantum
propagator that evolves the 3-geometry in proper time. We show that the
perturbation expansion of this operator is finite and computable order by
order. By giving a graphical representation a' la Feynman of this expansion, we
find that the theory can be expressed as a sum over topologically inequivalent
(branched, colored) 2d surfaces in 4d. The contribution of one surface to the
sum is given by the product of one factor per branching point of the surface.
Therefore branching points play the role of elementary vertices of the theory.
Their value is determined by the matrix elements of the hamiltonian constraint,
which are known. The formulation we obtain can be viewed as a continuum version
of Reisenberger's simplicial quantum gravity. Also, it has the same structure
as the Ooguri-Crane-Yetter 4d topological field theory, with a few key
differences that illuminate the relation between quantum gravity and TQFT.
Finally, we suggests that certain new terms should be added to the hamiltonian
constraint in order to implement a ``crossing'' symmetry related to 4d
diffeomorphism invariance.Comment: Seriously revised version. LaTeX, with revtex and epsfi
- âŠ