283 research outputs found

    Abundances of Baade's Window Giants from Keck/HIRES Spectra: II. The Alpha- and Light Odd Elements

    Full text link
    We report detailed chemical abundance analysis of 27 RGB stars towards the Galactic bulge in Baade's Window for elements produced by massive stars: O, Na, Mg, Al, Si, Ca and Ti. All of these elements are overabundant in the bulge relative to the disk, especially Mg, indicating that the bulge is enhanced in Type~II supernova ejecta and most likely formed more rapidly than the disk. We attribute a rapid decline of [O/Fe] to metallicity-dependent yields of oxygen in massive stars, perhaps connected to the Wolf-Reyet phenomenon. he explosive nucleosynthesis alphas, Si, Ca and Ti, possess identical trends with [Fe/H], consistent with their putative common origin. We note that different behaviors of hydrostatic and explosive alpha elements can be seen in the stellar abundances of stars in Local Group dwarf galaxies. We also attribute the decline of Si,Ca and Ti relative to Mg, to metallicity- dependent yields for the explosive alpha elements from Type~II supernovae. The starkly smaller scatter of [/Fe] with [Fe/H] in the bulge, as compared to the halo, is consistent with expected efficient mixing for the bulge. The metal-poor bulge [/Fe] ratios are higher than ~80% of the halo. If the bulge formed from halo gas, the event occured before ~80% of the present-day halo was formed. The lack of overlap between the thick and thin disk composition with the bulge does not support the idea that the bulge was built by a thickening of the disk driven by the bar. The trend of [Al/Fe] is very sensitive to the chemical evolution environment. A comparison of the bulge, disk and Sgr dSph galaxy shows a range of ~0.7 dex in [Al/Fe] at a given [Fe/H], presumably due to a range of Type~II/Type~Ia supernova ratios in these systems.Comment: 51 pages, 6 tables, 27 figures, submitte

    A monument to the player: Preserving a landscape of socio-cultural capital in the transitional MMORPG

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below - Copyright @ 2012 Taylor & Francis LtdMassively multiplayer online role-playing games (MMORPGs) produce dynamic socio-ludic worlds that nurture both culture and gameplay to shape experiences. Despite the persistent nature of these games, however, the virtual spaces that anchor these worlds may not always be able to exist in perpetuity. Encouraging a community to migrate from one space to another is a challenge now facing some game developers. This paper examines the case of Guild Wars¼ and its “Hall of Monuments”, a feature that bridges the accomplishments of players from the current game to the forthcoming sequel. Two factor analyses describe the perspectives of 105 and 187 self-selected participants. The results reveal four factors affecting attitudes towards the feature, but they do not strongly correlate with existing motivational frameworks, and significant differences were found between different cultures within the game. This informs a discussion about the implications and facilitation of such transitions, investigating themes of capital, value perception and assumptive worlds. It is concluded that the way subcultures produce meaning needs to be considered when attempting to preserve the socio-cultural landscape

    Differences between regular and random order of updates in damage spreading simulations

    Get PDF
    We investigate the spreading of damage in the three-dimensional Ising model by means of large-scale Monte-Carlo simulations. Within the Glauber dynamics we use different rules for the order in which the sites are updated. We find that the stationary damage values and the spreading temperature are different for different update order. In particular, random update order leads to larger damage and a lower spreading temperature than regular order. Consequently, damage spreading in the Ising model is non-universal not only with respect to different update algorithms (e.g. Glauber vs. heat-bath dynamics) as already known, but even with respect to the order of sites.Comment: final version as published, 4 pages REVTeX, 2 eps figures include

    Selinexor, a novel selective inhibitor of nuclear export, reduces SARS-CoV-2 infection and protects the respiratory system in vivo

    Get PDF
    The novel coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the recent global pandemic. The nuclear export protein (XPO1) has a direct role in the export of SARS-CoV proteins including ORF3b, ORF9b, and nucleocapsid. Inhibition of XPO1 induces anti-inflammatory, anti-viral, and antioxidant pathways. Selinexor is an FDA-approved XPO1 inhibitor. Through bioinformatics analysis, we predicted nuclear export sequences in the ACE-2 protein and confirmed by in vitro testing that inhibition of XPO1 with selinexor induces nuclear localization of ACE-2. Administration of selinexor inhibited viral infection prophylactically as well as therapeutically in vitro. In a ferret model of COVID-19, selinexor treatment reduced viral load in the lungs and protected against tissue damage in the nasal turbinates and lungs in vivo. Our studies demonstrated that selinexor downregulated the pro-inflammatory cytokines IL-1ÎČ, IL-6, IL-10, IFN-Îł, TNF-α, and GMCSF, commonly associated with the cytokine storm observed in COVID-19 patients. Our findings indicate that nuclear export is critical for SARS-CoV-2 infection and for COVID-19 pathology and suggest that inhibition of XPO1 by selinexor could be a viable anti-viral treatment option

    IRAS versus POTENT Density Fields on Large Scales: Biasing and Omega

    Get PDF
    The galaxy density field as extracted from the IRAS 1.2 Jy redshift survey is compared to the mass density field as reconstructed by the POTENT method from the Mark III catalog of peculiar velocities. The reconstruction is done with Gaussian smoothing of radius 12 h^{-1}Mpc, and the comparison is carried out within volumes of effective radii 31-46 h^{-1}Mpc, containing approximately 10-26 independent samples. Random and systematic errors are estimated from multiple realizations of mock catalogs drawn from a simulation that mimics the observed density field in the local universe. The relationship between the two density fields is found to be consistent with gravitational instability theory in the mildly nonlinear regime and a linear biasing relation between galaxies and mass. We measure beta = Omega^{0.6}/b_I = 0.89 \pm 0.12 within a volume of effective radius 40 h^{-1}Mpc, where b_I is the IRAS galaxy biasing parameter at 12 h^{-1}Mpc. This result is only weakly dependent on the comparison volume, suggesting that cosmic scatter is no greater than \pm 0.1. These data are thus consistent with Omega=1 and b_I\approx 1. If b_I>0.75, as theoretical models of biasing indicate, then Omega>0.33 at 95% confidence. A comparison with other estimates of beta suggests scale-dependence in the biasing relation for IRAS galaxies.Comment: 35 pages including 10 figures, AAS Latex, Submitted to The Astrophysical Journa

    Non-Abelian Anyons and Topological Quantum Computation

    Full text link
    Topological quantum computation has recently emerged as one of the most exciting approaches to constructing a fault-tolerant quantum computer. The proposal relies on the existence of topological states of matter whose quasiparticle excitations are neither bosons nor fermions, but are particles known as {\it Non-Abelian anyons}, meaning that they obey {\it non-Abelian braiding statistics}. Quantum information is stored in states with multiple quasiparticles, which have a topological degeneracy. The unitary gate operations which are necessary for quantum computation are carried out by braiding quasiparticles, and then measuring the multi-quasiparticle states. The fault-tolerance of a topological quantum computer arises from the non-local encoding of the states of the quasiparticles, which makes them immune to errors caused by local perturbations. To date, the only such topological states thought to have been found in nature are fractional quantum Hall states, most prominently the \nu=5/2 state, although several other prospective candidates have been proposed in systems as disparate as ultra-cold atoms in optical lattices and thin film superconductors. In this review article, we describe current research in this field, focusing on the general theoretical concepts of non-Abelian statistics as it relates to topological quantum computation, on understanding non-Abelian quantum Hall states, on proposed experiments to detect non-Abelian anyons, and on proposed architectures for a topological quantum computer. We address both the mathematical underpinnings of topological quantum computation and the physics of the subject using the \nu=5/2 fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.Comment: Final Accepted form for RM

    Bright Planetary Nebulae and their Progenitors in Galaxies Without Star Formation

    Full text link
    We present chemical abundances for planetary nebulae in M32, NGC 185, and NGC 205 based upon spectroscopy obtained at the Canada-France-Hawaii Telescope using the Multi-Object Spectrograph. From these and similar data compiled from the literature for other Local Group galaxies, we consider the origin and evolution of the stellar progenitors of bright planetary nebulae in galaxies where star formation ceased long ago. The ratio of neon to oxygen abundances in bright planetary nebulae is either identical to that measured in the interstellar medium of star-forming dwarf galaxies or at most changed by a few percent, indicating that neither abundance is significantly altered as a result of the evolution of their stellar progenitors. Several planetary nebulae appear to have dredged up oxygen, but these are the exception, not the rule. The progenitors of bright planetary nebulae typically enhance their original helium abundances by less than 50%. In contrast, nitrogen enhancements can reach factors of 100. However, nitrogen often shows little or no enhancement, suggesting that nitrogen enrichment is a random process. The helium, oxygen, and neon abundances argue that the typical bright planetary nebulae in all of the galaxies considered here are the progeny of stars with initial masses of approximately 1.5 Msun or less, based upon the nucleosynthesis predictions of current theoretical models. These models, however, are unable to explain the nitrogen enrichment or its scatter. Similar conclusions hold for the bright planetary nebulae in galaxies with ongoing star formation. Thus, though composition varies significantly, there is unity in the sense that the progenitors of typical bright planetary nebulae appear to have undergone similar physical processes. (Abridged)Comment: accepted for publication in the Astrophysical Journa

    Biomarker-driven phenotyping in Parkinson's disease: A translational missing link in disease-modifying clinical trials

    Get PDF
    Past clinical trials of putative neuroprotective therapies have targeted PD as a single pathogenic disease entity. From an Oslerian clinicopathological perspective, the wide complexity of PD converges into Lewy bodies and justifies a reductionist approach to PD: A single-mechanism therapy can affect most of those sharing the classic pathological hallmark. From a systems-biology perspective, PD is a group of disorders that, while related by sharing the feature of nigral dopamine-neuron degeneration, exhibit unique genetic, biological, and molecular abnormalities, which probably respond differentially to a given therapeutic approach, particularly for strategies aimed at neuroprotection. Under this model, only biomarker-defined, homogenous subtypes of PD are likely to respond optimally to therapies proven to affect the biological processes within each subtype. Therefore, we suggest that precision medicine applied to PD requires a reevaluation of the biomarker-discovery effort. This effort is currently centered on correlating biological measures to clinical features of PD and on identifying factors that predict whether various prodromal states will convert into the classical movement disorder. We suggest, instead, that subtyping of PD requires the reverse view, where abnormal biological signals (i.e., biomarkers), rather than clinical definitions, are used to define disease phenotypes. Successful development of disease-modifying strategies will depend on how relevant the specific biological processes addressed by an intervention are to the pathogenetic mechanisms in the subgroup of targeted patients. This precision-medicine approach will likely yield smaller, but well-defined, subsets of PD amenable to successful neuroprotection.Fil: Espay, Alberto J.. University of Cincinnati; Estados UnidosFil: Schwarzschild, Michael A.. Massachusetts General Hospital; Estados UnidosFil: Tanner, Caroline M.. University of California; Estados UnidosFil: Fernandez, Hubert H.. Cleveland Clinic; Estados UnidosFil: Simon, David K.. Harvard Medical School; Estados UnidosFil: Leverenz, James B.. Cleveland Clinic; Estados UnidosFil: Merola, Aristide. University of Cincinnati; Estados UnidosFil: Chen Plotkin, Alice. University of Pennsylvania; Estados UnidosFil: Brundin, Patrik. Van Andel Research Institute. Center for Neurodegenerative Science; Estados UnidosFil: Kauffman, Marcelo Andres. Universidad Austral; Argentina. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; ArgentinaFil: Erro, Roberto. Universita di Verona; Italia. University College London; Reino UnidoFil: Kieburtz, Karl. University of Rochester Medical Center; Estados UnidosFil: Woo, Daniel. University of Cincinnati; Estados UnidosFil: Macklin, Eric A.. Massachusetts General Hospital; Estados UnidosFil: Standaert, David G.. University of Alabama at Birmingahm; Estados UnidosFil: Lang, Anthony E.. University of Toronto; Canad

    Cosmology in the Next Millennium: Combining MAP and SDSS Data to Constrain Inflationary Models

    Get PDF
    The basic cosmological parameters and the primordial power spectrum together completely specify predictions for the cosmic microwave background radiation anisotropy and large scale structure. Here we show how we can strongly constrain both AS2(k)A_S^2(k) and the cosmological parameters by combining the data from the Microwave Anisotropy Probe (MAP) and the galaxy redshift survey from the Sloan Digital Sky Survey (SDSS). We allow AS2(k)A_S^2(k) to be a free function, and thus probe features in the primordial power spectrum on all scales. The primordial power spectrum in 20 steps in log⁥k\log k to k≀0.5hk\leq 0.5hMpc−1^{-1} can be determined to ∌16\sim 16% accuracy for k∌0.01hk\sim 0.01hMpc−1^{-1}, and to ∌1\sim 1% accuracy for k∌0.1hk\sim 0.1hMpc−1^{-1}. The uncertainty in the primordial power spectrum increases by a factor up to 3 on small scales if we solve simultaneously for the dimensionless Hubble constant hh, the cosmological constant Λ{\Lambda}, the baryon fraction Ωb\Omega_b, the reionization optical depth τri\tau_{ri}, and the effective bias between the matter density field and the redshift space galaxy density field beffb_{\it eff}. Alternately, if we restrict AS2(k)A_S^2(k) to be a power law, we find that inclusion of the SDSS data breaks the degeneracy between the amplitude of the power spectrum and the optical depth inherent in the MAP data, significantly reduces the uncertainties in the determination of the matter density and the cosmological constant, and allows a determination of the galaxy bias parameter. Thus, combining the MAP and SDSS data allows the independent measurement of important cosmological parameters, and a measurement of the primordial power spectrum independent of inflationary models, giving us valuable information on physics in the early Universe, and providing clues to the correct inflationary model.Comment: Substantial revisions to quantitative results as a result of more accurate calculation of derivatives; these new numerical results strengthen but do not change our qualitative results. Minor changes in wording. Several references added. Final version, to appear in ApJ January 1, 1999 issue, Vol. 510 #

    ``Sum over Surfaces'' form of Loop Quantum Gravity

    Get PDF
    We derive a spacetime formulation of quantum general relativity from (hamiltonian) loop quantum gravity. In particular, we study the quantum propagator that evolves the 3-geometry in proper time. We show that the perturbation expansion of this operator is finite and computable order by order. By giving a graphical representation a' la Feynman of this expansion, we find that the theory can be expressed as a sum over topologically inequivalent (branched, colored) 2d surfaces in 4d. The contribution of one surface to the sum is given by the product of one factor per branching point of the surface. Therefore branching points play the role of elementary vertices of the theory. Their value is determined by the matrix elements of the hamiltonian constraint, which are known. The formulation we obtain can be viewed as a continuum version of Reisenberger's simplicial quantum gravity. Also, it has the same structure as the Ooguri-Crane-Yetter 4d topological field theory, with a few key differences that illuminate the relation between quantum gravity and TQFT. Finally, we suggests that certain new terms should be added to the hamiltonian constraint in order to implement a ``crossing'' symmetry related to 4d diffeomorphism invariance.Comment: Seriously revised version. LaTeX, with revtex and epsfi
    • 

    corecore