4,580 research outputs found

    Quantum Inequalities on the Energy Density in Static Robertson-Walker Spacetimes

    Get PDF
    Quantum inequality restrictions on the stress-energy tensor for negative energy are developed for three and four-dimensional static spacetimes. We derive a general inequality in terms of a sum of mode functions which constrains the magnitude and duration of negative energy seen by an observer at rest in a static spacetime. This inequality is evaluated explicitly for a minimally coupled scalar field in three and four-dimensional static Robertson-Walker universes. In the limit of vanishing curvature, the flat spacetime inequalities are recovered. More generally, these inequalities contain the effects of spacetime curvature. In the limit of short sampling times, they take the flat space form plus subdominant curvature-dependent corrections.Comment: 18 pages, plain LATEX, with 3 figures, uses eps

    Quantum Inequalities and Singular Energy Densities

    Full text link
    There has been much recent work on quantum inequalities to constrain negative energy. These are uncertainty principle-type restrictions on the magnitude and duration of negative energy densities or fluxes. We consider several examples of apparent failures of the quantum inequalities, which involve passage of an observer through regions where the negative energy density becomes singular. We argue that this type of situation requires one to formulate quantum inequalities using sampling functions with compact support. We discuss such inequalities, and argue that they remain valid even in the presence of singular energy densities.Comment: 18 pages, LaTex, 2 figures, uses eps

    The study of correlation between sea surface temperature (SST) by using the NOAA-AVHRR data and compare this data with temperature measurement in the Caspian Sea

    Get PDF
    The changes in time and location of surface temperature from a water body has an important effect on climate activities, marine biology, sea currents, salinity and other characteristics of the seas and lakes water. Traditional measurement of temperature is costly and time consumer due to its dispersion and instability. In recent years the use of satellite technology and remote sensing sciences for data acquiring and parameter and lysis of climatology and oceanography is well developed. In this research we used the NOAA’s Satellite images from its AVHRR system to compare the field surface temperature data with the satellite images information. Ten satellite images were used in this project. These images were calibrated with the field data at the exact time of satellite pass above the area. The result was a significant relation between surface temperatures from satellite data with the field work. As the relative error less than %40 between these two data is acceptable, therefore in our observation the maximum error is %21.2 that can be considered it as acceptable. In all stations the result of satellite measurements is usually less than field data that cores ponds with the global result too. As this sea has a vast latitude, therefore the different in the temperature is natural. But we know this factor is not the only cause for surface currents. The information of all satellites were images extracted by ERDAS software, and the “Surfer” software is used to plot the isotherm lines

    Evaluation of Eu:LiCAF for Neutron Detection Utilizing SiPMs and Portable Electronics

    Get PDF
    With the increasing cost and decreasing availability of 3He, there have been many efforts to find alternative neutron detection materials. Lithium calcium aluminum fluoride (LiCAF) enriched to 95% 6Li doped with europium was evaluated here as a replacement material for 3He. Wafers 0.5 cm thick, consisting of LiCAF crystals in a rubberized matrix, were embedded with wavelength shifting fibers (WSF) and mated to silicon photo-multipliers (SiPMs) to measure the photon response in a flux of neutrons from a DD neutron generator. Excellent discrimination was realized between neutrons and gammas, and both pulse-height discrimination and pulse-shape analysis were explored. A Figure of Merit (FoM) of 1.03 was achieved. By applying pulse-shape analysis, a simple neutron count output was generated by utilizing a low-pass filter to suppress fast pulses from the SiPM output and subsequently applying a threshold to the remaining signal. Custom electronics were built to bias the SiPMs, then amplify, filter, discriminate, and digitize the LiCAF/WSF scintillation photons, resulting in a digital pulse that can easily be counted with any microcontroller or field programmable gate array. A significant advantage of LiCAF is that it can be fabricated into any shape/size (when embedded in a rubberized matrix), and the light output and transparency is sufficient to allow for thicker scintillators which enable detection of both thermal and epithermal neutrons. This work demonstrated that Eu:LiCAF is capable of discriminating gammas from neutrons and is a potential replacement material for 3He, especially for nuclear security applications and neutron spectroscopy

    Life Cycle Assessment Applied to Green Building Certification in South Korea

    Get PDF
    AbstractThe purpose of this study is to apply life cycle assessment (LCA) methodology for green building certification in South Korea. The method of environmental assessment in the field of building materials was examined using United States’ LEED, and the United Kingdom's BREEAM building certification systems. Life cycle data and assessment methods were established on major categories of materials thorough theoretical consideration on life cycle assessment.Building materials, assembly methods, and building use considerations were used to develop an assessment model to evaluate the environmental performance of a building. Numeric values for use in the developed model were established for concrete, rebar, gypsum board, steel, cement brick, glass, and insulation materials to potentially reduce greenhouse gas (GHG) emissions by 95% or more. An assessment method and LCA database were established. The model will be used to show that the choice of building materials can affect the GHG emissions during the construction phase of a building

    Vacuum Polarization and Energy Conditions at a Planar Frequency Dependent Dielectric to Vacuum Interface

    Full text link
    The form of the vacuum stress-tensor for the quantized scalar field at a dielectric to vacuum interface is studied. The dielectric is modeled to have an index of refraction that varies with frequency. We find that the stress-tensor components, derived from the mode function expansion of the Wightman function, are naturally regularized by the reflection and transmission coefficients of the mode at the boundary. Additionally, the divergence of the vacuum energy associated with a perfectly reflecting mirror is found to disappear for the dielectric mirror at the expense of introducing a new energy density near the surface which has the opposite sign. Thus the weak energy condition is always violated in some region of the spacetime. For the dielectric mirror, the mean vacuum energy density per unit plate area in a constant time hypersurface is always found to be positive (or zero) and the averaged weak energy condition is proven to hold for all observers with non-zero velocity along the normal direction to the boundary. Both results are found to be generic features of the vacuum stress-tensor and not necessarily dependent of the frequency dependence of the dielectric.Comment: 16 pages, 4 figures, Revtex style Minor typographic corrections to equations and tex

    Metagenomic Profiling of Microbial Pathogens in the Little Bighorn River, Montana

    Get PDF
    The Little Bighorn River is the primary source of water for water treatment plants serving the local Crow Agency population, and has special significance in the spiritual and ceremonial life of the Crow tribe. Unfortunately, the watershed suffers from impaired water quality, with high counts of fecal coliform bacteria routinely measured during run-off events. A metagenomic analysis was carried out to identify potential pathogens in the river water. The Oxford Nanopore MinION platform was used to sequence DNA in near real time to identify both uncultured and a coliform-enriched culture of microbes collected from a popular summer swimming area of the Little Bighorn River. Sequences were analyzed using CosmosID bioinformatics and, in agreement with previous studies, enterohemorrhagic and enteropathogenic Escherichia coli and other E. coli pathotypes were identified. Noteworthy was detection and identification of enteroaggregative E. coli O104:H4 and Vibrio cholerae serotype O1 El Tor, however, cholera toxin genes were not identified. Other pathogenic microbes, as well as virulence genes and antimicrobial resistance markers, were also identified and characterized by metagenomic analyses. It is concluded that metagenomics provides a useful and potentially routine tool for identifying in an in-depth manner microbial contamination of waterways and, thereby, protecting public health

    M87: A Misaligned BL LAC?

    Get PDF
    The nuclear region of M87 was observed with the Faint Object Spectrograph (FOS) on the Hubble Space Telescope (HST) at 6 epochs, spanning 18 months, after the HST image quality was improved with the deployment of the corrective optics (COSTAR) in December 1993. From the FOS target acquisition data, we have established that the flux from the optical nucleus of M87 varies by a factor ~2 on time scales of ~2.5 months and by as much as 25% over 3 weeks, and remains unchanged (<= 2.5%) on time scales of ~1 day. The changes occur in an unresolved central region <= 5 pc in diameter, with the physical size of the emitting region limited by the observed time scales to a few hundred gravitational radii. The featureless continuum spectrum becomes bluer as it brightens while emission lines remain unchanged. This variability combined with the observations of the continuum spectral shape, strong relativistic boosting and the detection of significant superluminal motions in the jet, strongly suggest that M87 belongs to the class of BL Lac objects but is viewed at an angle too large to reveal the classical BL Lac properties.Comment: 12 pages, 3 Postscript figure

    Surgical management of primary colonic lymphoma: Big data for a rare problem

    Full text link
    Background and ObjectivesPrimary colonic lymphoma (PCL) is rare, heterogeneous, and presents a therapeutic challenge for surgeons. Optimal treatment strategies are difficult to standardize, leading to variation in therapy. Our objective was to describe the patient characteristics, short‐term outcomes, and five‐year survival of patients undergoing nonpalliative surgery for PCL.MethodsWe performed a retrospective cohort analysis in the National Cancer Database. Included patients underwent surgery for PCL between 2004 to 2014. Patients with metastases and palliative operations were excluded. Univariate predictors of overall survival were analyzed using multivariable Cox proportional hazard analysis.ResultsWe identified 2153 patients. Median patient age was 68. Diffuse large B‐cell lymphoma accounted for 57% of tumors. 30‐ and 90‐Day mortality were high (5.6% and 11.1%, respectively). Thirty‐nine percent of patients received adjuvant chemotherapy. For patients surviving 90 days, 5‐year survival was 71.8%. Chemotherapy improved survival (surgery+chemo, 75.4% vs surgery, 68.6%; P = .01). Adjuvant chemotherapy was associated with overall survival after controlling for age, comorbidity, and lymphoma subtype (HR 1.27; 95% CI, 1.07‐1.51; P = .01).ConclusionsPatients undergoing surgery for PCL have high rates of margin positivity and high short‐term mortality. Chemotherapy improves survival, but <50% receive it. These data suggest the opportunity for improvement of care in patients with PCL.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150597/1/jso25582_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150597/2/jso25582.pd
    • 

    corecore