648 research outputs found
Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules
Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules.Nadiatul A. Mohd-Radzman was supported by ANU International PhD Scholarship. This work was supported by an Australian Research Council grant to Michael A. Djordjevic and Nijat Imin (DP140103714)
Is there gold at the top of the beanstalk?
A report on the 3rd International Legume Genetics and Genomics Conference, Brisbane, Australia, 9-13 April 2006
Regulation of Arabidopsis root development by small signaling peptides
Plant root systems arise de novo from a single embryonic root. Complex and highly coordinated developmental networks are required to ensure the formation of lateral organs maximizes plant fitness. The Arabidopsis root is well-suited to dissection of regulatory and developmental networks due to its highly ordered, predictable structure. A myriad of regulatory signaling networks control the development of plant roots, from the classical hormones such as auxin and cytokinin to short-range positional signaling molecules that relay information between neighboring cells. Small signaling peptides are a growing class of regulatory molecules involved in many aspects of root development including meristem maintenance, the gravitropic response, lateral root development, and vascular formation. Here, recent findings on the roles of regulatory peptides in these aspects of root development are discussed.Christina Delay was supported by an Australia Postgraduate Award
and GRDC Grains Industry Research Scholarship (GRS10329).
This work was supported by an Australian Research Council grant
to Michael A. Djordjeric and Nijat Imin (DP140103714)
Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana
Flavonoids are low molecular weight secondary plant metabolites with a myriad of functions. As flavonoids affect auxin transport (an important growth-controlling hormone) and are biologically active in eukaryotes, flavonoid mutants were expected to have undescribed architectural phenotypes. The Arabidopsis thaliana transparent testa (tt) mutants are compromised in the enzymatic steps or transcriptional regulators affecting flavonoid synthesis. tt mutant seedlings were grown on hard-slanted agar (a stress condition), under varying light conditions, and in soil to examine the resulting growth patterns. These tt mutants revealed a wide variety of architectural phenotypes in root and aerial tissues. Mutants with increased inflorescences, siliques, and lateral root density or reduced stature are traits that could affect plant yield or performance under certain environmental conditions. The regulatory genes affected in architectural traits may provide useful molecular targets for examination in other plants
Diversification of the C-TERMINALLY ENCODED PEPTIDE (CEP) gene family in angiosperms, and evolution of plant-family specific CEP genes
BACKGROUND Small, secreted signaling peptides work in parallel with phytohormones to control important aspects of plant growth and development. Genes from the C-TERMINALLY ENCODED PEPTIDE (CEP) family produce such peptides which negatively regulate plant growth, especially under stress, and affect other important developmental processes. To illuminate how the CEP gene family has evolved within the plant kingdom, including its emergence, diversification and variation between lineages, a comprehensive survey was undertaken to identify and characterize CEP genes in 106 plant genomes. RESULTS Using a motif-based system developed for this study to identify canonical CEP peptide domains, a total of 916 CEP genes and 1,223 CEP domains were found in angiosperms and for the first time in gymnosperms. This defines a narrow band for the emergence of CEP genes in plants, from the divergence of lycophytes to the angiosperm/gymnosperm split. Both CEP genes and domains were found to have diversified in angiosperms, particularly in the Poaceae and Solanaceae plant families. Multispecies orthologous relationships were determined for 22% of identified CEP genes, and further analysis of those groups found selective constraints upon residues within the CEP peptide and within the previously little-characterized variable region. An examination of public Oryza sativa RNA-Seq datasets revealed an expression pattern that links OsCEP5 and OsCEP6 to panicle development and flowering, and CEP gene trees reveal these emerged from a duplication event associated with the Poaceae plant family. CONCLUSIONS The characterization of the plant-family specific CEP genes OsCEP5 and OsCEP6, the association of CEP genes with angiosperm-specific development processes like panicle development, and the diversification of CEP genes in angiosperms provides further support for the hypothesis that CEP genes have been integral to the evolution of novel traits within the angiosperm lineage. Beyond these findings, the comprehensive set of CEP genes and their properties reported here will be a resource for future research on CEP genes and peptides.We thank Jason Bragg for his input and advice on inferring gene trees. This work was supported by an Australian Research Council Discovery Project grant (DP120101893). HAO received financial support (UHS10488) to conduct this study from the Grains Research and Development Council
CEP-CEPR1 signalling inhibits the sucrose-dependent enhancement of lateral root growth
Lateral root (LR) proliferation is a major determinant of soil nutrient uptake. How resource allocation controls the extent of LR growth remains unresolved. We used genetic, physiological, transcriptomic, and grafting approaches to define a role for C-TERMINALLY ENCODED PEPTIDE RECEPTOR 1 (CEPR1) in controlling sucrose-dependent LR growth. CEPR1 inhibited LR growth in response to applied sucrose, other metabolizable sugars, and elevated light intensity. Pathways through CEPR1 restricted LR growth by reducing LR meristem size and the length of mature LR cells. RNA-sequencing of wild-type (WT) and cepr1-1 roots with or without sucrose treatment revealed an intersection of CEP–CEPR1 signalling with the sucrose transcriptional response. Sucrose up-regulated several CEP genes, supporting a specific role for CEP–CEPR1 in the response to sucrose. Moreover, genes with basally perturbed expression in cepr1-1 overlap with WT sucrose-responsive genes significantly. We found that exogenous CEP inhibited LR growth via CEPR1 by reducing LR meristem size and mature cell length. This result is consistent with CEP–CEPR1 acting to curtail the extent of sucrose-dependent LR growth. Reciprocal grafting indicates that LR growth inhibition requires CEPR1 in both the roots and shoots. Our results reveal a new role for CEP–CEPR1 signalling in controlling LR growth in response to sucrose.An Australian Research Council grant to MAD (DP150104250) supported this work. KC was supported by an ANU PhD scholarship. MT was supported by an Australian Post Graduate award
The Expression of Genes Encoding Secreted Proteins in Medicago truncatula A17 Inoculated Roots
Subtilisin-like serine protease (MtSBT), serine carboxypeptidase (MtSCP), MtN5, non-specific lipid transfer protein (MtnsLTP), early nodulin2-like protein (MtENOD2-like), FAD-binding domain containing protein (MtFAD-BP1), and rhicadhesin receptor protein (MtRHRE1) were among 34 proteins found in the supernatant of M. truncatula 2HA and sickle cell suspension cultures. This study investigated the expression of genes encoding those proteins in roots and developing nodules. Two methods were used: quantitative real time RT-PCR and gene expression analysis (with promoter:GUS fusion) in roots. Those proteins are predicted as secreted proteins which is indirectly supported by the findings that promoter:GUS fusions of six of the seven genes encoding secreted proteins were strongly expressed in the vascular bundle of transgenic hairy roots. All six genes have expressed in 14-day old nodule. The expression levels of the selected seven genes were quantified in Sinorhizobium-inoculated and control plants using quantitative real time RT-PCR. In conclusion, among seven genes encoding secreted proteins analyzed, the expression level of only one gene, MtN5, was up-regulated significantly in inoculated root segments compared to controls. The expression of MtSBT1, MtSCP1, MtnsLTP, MtFAD-BP1, MtRHRE1 and MtN5 were higher in root tip than in other tissues examined
Improving hox protein classification across the major model organisms
The family of Hox-proteins has been a major focus of research for over 30 years. Hox-proteins are crucial to the correct development of bilateral organisms, however, some uncertainty remains as to which Hox-proteins are functionally equivalent across different species. Initial classification of Hox-proteins was based on phylogenetic analysis of the 60 amino acid homeodomain. This approach was successful in classifying Hox-proteins with differing homeodomains, but the relationships of Hox-proteins with nearly identical homeodomains, yet distinct biological functions, could not be resolved. Correspondingly, these 'problematic' proteins were classified into one large unresolved group. Other classifications used the relative location of the Hox-protein coding genes on the chromosome (synteny) to further resolve this group. Although widely used, this synteny-based classification is inconsistent with experimental evidence from functional equivalence studies. These inconsistencies led us to re-examine and derive a new classification for the Hox-protein family using all Hox-protein sequences available in the GenBank non-redundant protein database (NCBI-nr). We compare the use of the homeodomain, the homeodomain with conserved flanking regions (the YPWM and linker region), and full length Hox-protein sequences as a basis for classification of Hox-proteins. In contrast to previous attempts, our approach is able to resolve the relationships for the 'problematic' as well as ABD-B-like Hox-proteins. We highlight differences to previous classifications and clarify the relationships of Hox-proteins across the five major model organisms, Caenorhabditis elegans, Drosophila melanogaster, Branchiostoma floridae, Mus musculus and Danio rerio. Comparative and functional analysis of Hox-proteins, two fields crucial to understanding the development of bilateral organisms, have been hampered by difficulties in predicting functionally equivalent Hox-proteins across species. Our classification scheme offers a higher-resolution classification that is in accordance with phylogenetic as well as experimental data and, thereby, provides a novel basis for experiments, such as comparative and functional analyses of Hox-proteins.Funding for this work has been provided by the Australian Research Council, Center for Excellence Grant (CEO348212)
- …