23 research outputs found

    PACE: Pattern Accurate Computationally Efficient Bootstrapping for Timely Discovery of Cyber-Security Concepts

    Full text link
    Public disclosure of important security information, such as knowledge of vulnerabilities or exploits, often occurs in blogs, tweets, mailing lists, and other online sources months before proper classification into structured databases. In order to facilitate timely discovery of such knowledge, we propose a novel semi-supervised learning algorithm, PACE, for identifying and classifying relevant entities in text sources. The main contribution of this paper is an enhancement of the traditional bootstrapping method for entity extraction by employing a time-memory trade-off that simultaneously circumvents a costly corpus search while strengthening pattern nomination, which should increase accuracy. An implementation in the cyber-security domain is discussed as well as challenges to Natural Language Processing imposed by the security domain.Comment: 6 pages, 3 figures, ieeeTran conference. International Conference on Machine Learning and Applications 201

    Developing and Deploying Security Applications for In-Vehicle Networks

    Full text link
    Radiological material transportation is primarily facilitated by heavy-duty on-road vehicles. Modern vehicles have dozens of electronic control units or ECUs, which are small, embedded computers that communicate with sensors and each other for vehicle functionality. ECUs use a standardized network architecture--Controller Area Network or CAN--which presents grave security concerns that have been exploited by researchers and hackers alike. For instance, ECUs can be impersonated by adversaries who have infiltrated an automotive CAN and disable or invoke unintended vehicle functions such as brakes, acceleration, or safety mechanisms. Further, the quality of security approaches varies wildly between manufacturers. Thus, research and development of after-market security solutions have grown remarkably in recent years. Many researchers are exploring deployable intrusion detection and prevention mechanisms using machine learning and data science techniques. However, there is a gap between developing security system algorithms and deploying prototype security appliances in-vehicle. In this paper, we, a research team at Oak Ridge National Laboratory working in this space, highlight challenges in the development pipeline, and provide techniques to standardize methodology and overcome technological hurdles.Comment: 10 pages, PATRAM 2

    AI ATAC 1: An Evaluation of Prominent Commercial Malware Detectors

    Full text link
    This work presents an evaluation of six prominent commercial endpoint malware detectors, a network malware detector, and a file-conviction algorithm from a cyber technology vendor. The evaluation was administered as the first of the Artificial Intelligence Applications to Autonomous Cybersecurity (AI ATAC) prize challenges, funded by / completed in service of the US Navy. The experiment employed 100K files (50/50% benign/malicious) with a stratified distribution of file types, including ~1K zero-day program executables (increasing experiment size two orders of magnitude over previous work). We present an evaluation process of delivering a file to a fresh virtual machine donning the detection technology, waiting 90s to allow static detection, then executing the file and waiting another period for dynamic detection; this allows greater fidelity in the observational data than previous experiments, in particular, resource and time-to-detection statistics. To execute all 800K trials (100K files ×\times 8 tools), a software framework is designed to choreographed the experiment into a completely automated, time-synced, and reproducible workflow with substantial parallelization. A cost-benefit model was configured to integrate the tools' recall, precision, time to detection, and resource requirements into a single comparable quantity by simulating costs of use. This provides a ranking methodology for cyber competitions and a lens through which to reason about the varied statistical viewpoints of the results. These statistical and cost-model results provide insights on state of commercial malware detection

    Beyond the Hype: A Real-World Evaluation of the Impact and Cost of Machine Learning-Based Malware Detection

    Full text link
    There is a lack of scientific testing of commercially available malware detectors, especially those that boast accurate classification of never-before-seen (i.e., zero-day) files using machine learning (ML). The result is that the efficacy and gaps among the available approaches are opaque, inhibiting end users from making informed network security decisions and researchers from targeting gaps in current detectors. In this paper, we present a scientific evaluation of four market-leading malware detection tools to assist an organization with two primary questions: (Q1) To what extent do ML-based tools accurately classify never-before-seen files without sacrificing detection ability on known files? (Q2) Is it worth purchasing a network-level malware detector to complement host-based detection? We tested each tool against 3,536 total files (2,554 or 72% malicious, 982 or 28% benign) including over 400 zero-day malware, and tested with a variety of file types and protocols for delivery. We present statistical results on detection time and accuracy, consider complementary analysis (using multiple tools together), and provide two novel applications of a recent cost-benefit evaluation procedure by Iannaconne & Bridges that incorporates all the above metrics into a single quantifiable cost. While the ML-based tools are more effective at detecting zero-day files and executables, the signature-based tool may still be an overall better option. Both network-based tools provide substantial (simulated) savings when paired with either host tool, yet both show poor detection rates on protocols other than HTTP or SMTP. Our results show that all four tools have near-perfect precision but alarmingly low recall, especially on file types other than executables and office files -- 37% of malware tested, including all polyglot files, were undetected.Comment: Includes Actionable Takeaways for SOC
    corecore