64 research outputs found

    Efficient Load Flow Techniques Based on Holomorphic Embedding for Distribution Networks

    Full text link
    The Holomorphic Embedding Load flow Method (HELM) employs complex analysis to solve the load flow problem. It guarantees finding the correct solution when it exists, and identifying when a solution does not exist. The method, however, is usually computationally less efficient than the traditional Newton-Raphson algorithm, which is generally considered to be a slow method in distribution networks. In this paper, we present two HELM modifications that exploit the radial and weakly meshed topology of distribution networks and significantly reduce computation time relative to the original HELM implementation. We also present comparisons with several popular load flow algorithms applied to various test distribution networks.Comment: Accepted for publication in the Proceedings of 2019 IEEE PES General Meeting, 5 Page

    FrogWild! -- Fast PageRank Approximations on Graph Engines

    Full text link
    We propose FrogWild, a novel algorithm for fast approximation of high PageRank vertices, geared towards reducing network costs of running traditional PageRank algorithms. Our algorithm can be seen as a quantized version of power iteration that performs multiple parallel random walks over a directed graph. One important innovation is that we introduce a modification to the GraphLab framework that only partially synchronizes mirror vertices. This partial synchronization vastly reduces the network traffic generated by traditional PageRank algorithms, thus greatly reducing the per-iteration cost of PageRank. On the other hand, this partial synchronization also creates dependencies between the random walks used to estimate PageRank. Our main theoretical innovation is the analysis of the correlations introduced by this partial synchronization process and a bound establishing that our approximation is close to the true PageRank vector. We implement our algorithm in GraphLab and compare it against the default PageRank implementation. We show that our algorithm is very fast, performing each iteration in less than one second on the Twitter graph and can be up to 7x faster compared to the standard GraphLab PageRank implementation

    Learning from past bids to participate strategically in day-ahead electricity markets

    Full text link
    We consider the process of bidding by electricity suppliers in a day-ahead market context, where each supplier bids a linear non-decreasing function of her generating capacity with the goal of maximizing her individual profit given other competing suppliers' bids. Based on the submitted bids, the market operator schedules suppliers to meet demand during each hour and determines hourly market clearing prices. Eventually, this game-theoretic process reaches a Nash equilibrium when no supplier is motivated to modify her bid. However, solving the individual profit maximization problem requires information of rivals' bids, which are typically not available. To address this issue, we develop an inverse optimization approach for estimating rivals' production cost functions given historical market clearing prices and production levels. We then use these functions to bid strategically and compute Nash equilibrium bids. We present numerical experiments illustrating our methodology, showing good agreement between bids based on the estimated production cost functions with the bids based on the true cost functions. We discuss an extension of our approach that takes into account network congestion resulting in location-dependent pricesFirst author draf

    Learning from Past Bids to Participate Strategically in Day-Ahead Electricity Markets

    Full text link
    We consider the process of bidding by electricity suppliers in a day-ahead market context where each supplier bids a linear non-decreasing function of her generating capacity with the goal of maximizing her individual profit given other competing suppliers' bids. Based on the submitted bids, the market operator schedules suppliers to meet demand during each hour and determines hourly market clearing prices. Eventually, this game-theoretic process reaches a Nash equilibrium when no supplier is motivated to modify her bid. However, solving the individual profit maximization problem requires information of rivals' bids, which are typically not available. To address this issue, we develop an inverse optimization approach for estimating rivals' production cost functions given historical market clearing prices and production levels. We then use these functions to bid strategically and compute Nash equilibrium bids. We present numerical experiments illustrating our methodology, showing good agreement between bids based on the estimated production cost functions with the bids based on the true cost functions. We discuss an extension of our approach that takes into account network congestion resulting in location-dependent prices

    Developing a simulator for the Greek electricity market

    Get PDF
    Following the liberalization of the Greek electricity market, the Greek Regulatory Authority for Energy (RAE) undertook the design and implementation of a simulator for the wholesale market and its interactions with the Natural Gas Transportation System. The simulator consists of several interacting modules representing all key market operations and dynamics including (i) day-ahead scheduling based on bids of market participants, (ii) natural gas system constraints, (iii) unplanned variability of loads and available capacity driven either by uncertain stochastic outcomes or deliberate participant schedule deviations, (iv) real time dispatch, and (v) financial settlement of day ahead and real time schedule differences. The modules are integrated into one software package capable of simulating all market dynamics, deliberate or probabilistic, and their interactions across all relevant time scales. The intended use of the simulator is to elaborate on and allow RAE to investigate the impact of participant decision strategies on market outcomes. The ultimate purpose is to evaluate the effectiveness of Market Rules, whether existing or contemplated, in providing incentives for competitive behaviour and in discouraging gaming and market manipulation. This paper describes the development of the simulator relative to the current Greek Electricity Market Design and key contemplated revisions.simulation; regulatory policy; electricity markets; market design;
    • …
    corecore