10,303 research outputs found

    Low-distortion slow light using two absorption resonances

    Get PDF
    We consider group delay and broadening using two strongly absorbing and widely spaced resonances. We derive relations which show that very large pulse bandwidths coupled with large group delays and small broadening can be achieved. Unlike single resonance systems, the dispersive broadening dominates the absorptive broadening which leads to a dramatic increase in the possible group delay. We show that the double resonance systems are excellent candidates for realizing all-optical delay lines. We report on an experiment which achieved up to 50 pulse delays with 40% broadening.Comment: 4 pages 4 figure

    65 Lessons Learned the Hard Way while Making The Hunter\u27s Apprentice

    Get PDF
    The following thesis describes the lessons that were learned during the process of making a short film, covering the areas of pre-production, production, and post-production. The shooting script is included in the appendix

    65 Lessons Learned the Hard Way while Making The Hunter\u27s Apprentice

    Get PDF
    The following thesis describes the lessons that were learned during the process of making a short film, covering the areas of pre-production, production, and post-production. The shooting script is included in the appendix

    Monitoring of nitrogen leaching on a dairy farm during four drainage seasons

    Get PDF
    peer-reviewedThe authors acknowledge funding from the Environmental Protection Agency and Teagasc under the 2000–2006 RTDI programme.The effect of four commonly used dairy farm management systems (treatments), on nitrogen leaching to 1 m was studied over a 4-year period from October 2001 to April 2005. The treatments were (i) grazed plots receiving dirty water, (ii) 2-cut silage plots receiving slurry, (iii) grazed plots and (iv) 1-cut silage plots receiving slurry. All plots had fertiliser N applied; the soil was free-draining overlying fissured limestone. Mean 4-year N input (kg/ha) was 319 and mean annual stocking density was ~2.38 LU/ha. The annual average and weekly NO3-N and NH4-N concentrations in drainage water were analysed for all years, using a repeated measures analysis. For the annual NO3-N data, there was an interaction between treatment and year (P < 0.001). There were significant differences (P < 0.05) in NO3-N concentrations between the treatments in all years except the third. For the NH4-N data there was no interaction between treatment and year or main effect of treatment but there were differences between years (P < 0.01). Mean weekly concentrations were analysed separately for each year. For NO3-N, in all years but the third, there was an interaction between treatment and week (P < 0.001); this occurred with NH4-N, in all 4 years. Dirty water was significantly higher than grazed-fertiliser only and 1-cut silage in NO3-N concentrations in 2001–02; in 2002–03, dirty water and 2-cut silage were significantly higher than the other treatments; while in 2004–05, dirty water and grazed-fertiliser only were significantly higher than the other two treatments. The overall 4-year mean NO3-N and NH4-N concentrations were 8.2 and 0.297 mg/L, respectively.Environmental Protection Agenc

    Effect of Agricultural Practices on Nitrate Leaching

    Get PDF
    Teagasc wishes to acknowledge with gratitude funding from the 2000-2006 EPA RTDI programme in financing this research project.End of project reportA farm-scale study, carried out at Teagasc, Moorepark (Curtin’s farm), examined the effect of four managements (treatments) on nitrate-nitrogen (NO3-N) leaching over the period 2001-`05. Leaching was measured in these treatments: (T1) plots receiving dirty water and N fertilizer which were grazed; (T2) 2-cut silage and grazing plots receiving slurry and fertilizer N; (T3) grazed plots receiving fertilizer N and (T4) 1-cut silage and grazing plots receiving slurry and fertilizer N. The soil is a free-draining sandy loam overlying Karstic fissured limestone. The mean direct N inputs (kg/ha) for T1-T4 in 2001-`04 were 311, 309, 326, 331, respectively, with stocking rates (LU/ha) of 2.12 - ~2.47. Eight ceramic cups per plot, in 3 replicate plots of each treatment, were used to collect water, on a weekly basis, from 1.0 m deep using 50 kPa suction. There were 33, 37, 26 and 24 sampling dates in the 4 years, respectively. The NO3-N and NH4-N concentrations (mg/l) were determined in the water samples. The annual average and weekly concentration of these parameters was statistically analysed for all years, using a repeated measures analysis. The aggregated data were not normally distributed. There was an interaction between treatment and year (p<0.001). Significant differences (p=0.05) in NO3-N concentrations showed between the treatments in years 1, 2, 4 but not in year 3. For the NH4-N data there was no interaction between treatment and year, p=0.12, or main effect of treatment, p=0.54 but there were differences between years, p=0.01. Mean weekly concentrations were analysed separately for each year. For NO3-N, in years 1, 2 and 4 there was an interaction between treatment and week (p<0.001). With NH4-N, there was an interaction between treatment and week in all 4 years. Dirty water was significantly higher than grazed and 1 cut silage in NO3-N concentrations in year 1; in year 2, dirty water and 2 cut silage were significantly higher than the other treatments while in year 4, dirty water and grazed were significantly higher than the other two treatments. The overall four-year weighted mean NO3-N and NH4-N concentrations were 8.2 and 0.297 mg/l. The NCYCLE (UK) model was adapted for Irish conditions as NCYCLE_IRL. The NCYCLE empirical approach proved to be suitable to predict N fluxes from Irish grassland systems in most situations. Experimental data appeared to agree quite well, in most cases, with the outputs from NCYCLE_IRL. The model was not capable of predicting data from some of the leaching experiments, which suggests that the observed leaching phenomena in these experiments could be governed by non-average conditions or other parameters not accounted for in NCYCLE_IRL. An approach that took into account denitrification, leaching and herbage yield would probably explain the differences found. NCYCLE_IRL proved to be a useful tool to analyse N leaching from grazed and cut grassland systems in Ireland.Environmental Protection Agenc

    Radiative hydrodynamic modelling and observations of the X-class solar flare on 2011 March 9

    Get PDF
    We investigated the response of the solar atmosphere to non-thermal electron beam heating using the radiative transfer and hydrodynamics modelling code RADYN. The temporal evolution of the parameters that describe the non-thermal electron energy distribution were derived from hard X-ray observations of a particular flare, and we compared the modelled and observed parameters. The evolution of the non-thermal electron beam parameters during the X1.5 solar flare on 2011 March 9 were obtained from analysis of RHESSI X-ray spectra. The RADYN flare model was allowed to evolve for 110 seconds, after which the electron beam heating was ended, and was then allowed to continue evolving for a further 300s. The modelled flare parameters were compared to the observed parameters determined from extreme-ultraviolet spectroscopy. The model produced a hotter and denser flare loop than that observed and also cooled more rapidly, suggesting that additional energy input in the decay phase of the flare is required. In the explosive evaporation phase a region of high-density cool material propagated upward through the corona. This material underwent a rapid increase in temperature as it was unable to radiate away all of the energy deposited across it by the non-thermal electron beam and via thermal conduction. A narrow and high-density (ne≤1015n_{e} \le 10^{15} cm−3^{-3}) region at the base of the flare transition region was the source of optical line emission in the model atmosphere. The collision-stopping depth of electrons was calculated throughout the evolution of the flare, and it was found that the compression of the lower atmosphere may permit electrons to penetrate farther into a flaring atmosphere compared to a quiet Sun atmosphere.Comment: 12 pages, 12 figure
    • …
    corecore