17 research outputs found

    LunaH-Map: Revealing Lunar Water with a New Radiation Sensor Array

    Get PDF
    A new type of neutron and gamma-ray spectrometer called the Miniature Neutron Spectrometer (Mini-NS) has been developed, assembled, qualified and delivered as part of the Lunar Polar Hydrogen Mapper (LunaH-Map) cubesat mission. The LunaH-Map spacecraft is currently manifested as a secondary payload on the Space Launch System (SLS) Artemis-1 rocket. LunaH-Map will deploy from Artemis-1 and enter a low altitude perilune elliptical orbit around the Moon. The Mini-NS will measure the lunar epithermal neutron albedo, and measurements around perilune will be used to produce maps of hydrogen enrichments and depletions across the lunar South Pole region including both within and outside of permanently shadowed regions (PSRs). The Min-NS was designed to achieve twice the epithermal neutron count rate of the Lunar Prospector Neutron Spectrometer (LP-NS). The instrument response was characterized through the collection of pre-flight neutron counting data with a Cf-252 neutron source at Arizona State University across hundreds of power cycles, as well as across the expected temperature range. The instrument spatial response was characterized at the Los Alamos National Laboratories (LANL) Neutron Free In-Air Facility. The LunaH-Map Mini-NS was designed to fit within the cubesat form-factor and uses two detectors with eight sensor heads that can be operated independently. For future missions with different science goals that can be achieved with epithermal neutron detection, the number of Mini-NS sensor heads can easily be modified without requiring a complete re-design and re-qualification

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Getting Creative on What Will Do: Cyber Espionage, Conflict and Covert Action

    No full text

    Wrongful Convictions: A Comparative Perspective

    No full text

    Characterization of JWST science performance from commissioning: National Aeronautics and Space Administration European Space Agency Canadian Space Agency

    No full text
    corecore