19 research outputs found

    The endogenous thrombin potential in patients with left ventricular assist device or heart transplant

    Get PDF
    BackgroundThe Heartmate 3 (HM 3) is a left ventricular assist device featuring less shear stress, milder acquired von Willebrand syndrome, and fewer bleeding incidences than its predecessor the Heartmate II (HM II). The novel surface coating of the HM 3 suggests less contact activation of plasmatic coagulation. We hypothesized that patients with HM 3 exhibit fewer aberrations in their thrombin potential than patients with HM II. We compared these results with the thrombin potential of patients with heart transplantation (HTX).MethodsThrombin generation in plasma samples of patients with HM II (n = 16), HM 3 (n = 20), and HTX (n = 13) was analyzed 3 days after implantation/transplantation and after long-term support (3–24 months) with HM II (n = 16) or HM 3 (n = 12) using calibrated automated thrombography. Heparin in postoperative samples was antagonized with polybrene.ResultsThree days postoperatively HM II patients exhibited a lower endogenous thrombin potential (ETP) than HM 3 and HTX patients (HM II: 947 ± 291 nM*min; HM 3: 1231 ± 176 nM*min; HTX: 1376 ± 162 nM*min, p < 0.001) and a lower velocity index of thrombin generation (HM II: 18.74 ± 10.90 nM/min; HM 3: 32.41 ± 9.51 nM/min; HTX: 37.65 ± 9.41 nM/min, p < 0.01). Subtle differences in the thrombin generation profiles remained in HM II and HM 3 patients under long-term support (Velocity Index: HM II: 38.70 ± 28.46 nM/min; HM 3: 73.32 ± 32.83 nM/min, p < 0.05). Prothrombin fragments 1 + 2 were higher in HM II than in HM 3 patients (HM II: 377.7 ± 208.4 pM; HM 3: 202.1 ± 87.7 pM, p < 0.05) and correlated inversely with the ETP (r = −0.584, p < 0.05).ConclusionWe observed a more aberrant thrombin generation in HM II than in HM 3 despite comparable anticoagulation and routine parameters. A trend toward lower values was still observable in HM 3 compared to HTX patients. Calibrated automated thrombography may be a good tool to monitor the coagulation state of these patients and guide anticoagulation in the future

    A proposal for early dosing regimens in heart transplant patients receiving thymoglobulin and calcineurin inhibition

    Full text link
    There is currently no consensus regarding the dose or duration of rabbit antithymocyte globulin (rATG) induction in different types of heart transplant patients, or the timing and intensity of initial calcineurin inhibitor (CNI) therapy in rATG-treated individuals. Based on limited data and personal experience, the authors propose an approach to rATG dosing and initial CNI administration. Usually rATG is initiated immediately after exclusion of primary graft failure, although intraoperative initiation may be appropriate in specific cases. A total rATG dose of 4.5 to 7.5 mg/kg is advisable, tailored within that range according to immunologic risk and adjusted according to immune monitoring. Lower doses (eg, 3.0 mg/kg) of rATG can be used in patients at low immunological risk, or 1.5 to 2.5 mg/kg for patients with infection on mechanical circulatory support. The timing of CNI introduction is dictated by renal recovery, varying between day 3 and day 0 after heart transplantation, and the initial target exposure is influenced by immunological risk and presence of infection. Rabbit antithymocyte globulin and CNI dosing should not overlap except in high-risk cases. There is a clear need for more studies to define the optimal dosing regimens for rATG and early CNI exposure according to risk profile in heart transplantation

    Heart re-transplantation in Eurotransplant

    Get PDF
    Internationally 3% of the donor hearts are distributed to re-transplant patients. In Eurotransplant, only patients with a primary graft dysfunction (PGD) within 1 week after heart transplantation (HTX) are indicated for high urgency listing. The aim of this study is to provide evidence for the discussion on whether these patients should still be allocated with priority. All consecutive HTX performed in the period 1981-2015 were included. Multivariate Cox' model was built including: donor and recipient age and gender, ischaemia time, recipient diagnose, urgency status and era. The study population included 18 490 HTX, of these 463 (2.6%) were repeat transplants. The major indications for re-HTX were cardiac allograft vasculopathy (CAV) (50%), PGD (26%) and acute rejection (21%). In a multivariate model, compared with first HTX hazards ratio and 95% confidence interval for repeat HTX were 2.27 (1.83-2.82) for PGD, 2.24 (1.76-2.85) for acute rejection and 1.22 (1.00-1.48) for CAV (P < 0.0001). Outcome after cardiac re-HTX strongly depends on the indication for re-HTX with acceptable outcomes for CAV. In contrast, just 47.5% of all hearts transplanted in patients who were re-transplanted for PGD still functioned at 1-month post-transplant. Alternative options like VA-ECMO should be first offered before opting for acute re-transplantation

    Disparities in donor heart acceptance between the USA and Europe:clinical implications

    Get PDF
    Background and Aims Given limited evidence and lack of consensus on donor acceptance for heart transplant (HT), selection practices vary widely Aims across HT centres in the USA. Similar variation likely exists on a broader scale—across countries and HT systems—but remains largely unexplored. This study characterized differences in heart donor populations and selection practices between the USA and Eurotransplant—a consortium of eight European countries—and their implications for system-wide outcomes. Methods Characteristics of adult reported heart donors and their utilization (the percentage of reported donors accepted for HT) were compared between Eurotransplant (n = 8714) and the USA (n = 60 882) from 2010 to 2020. Predictors of donor acceptance were identified using multivariable logistic regression. Additional analyses estimated the impact of achieving Eurotransplant-level utilization in the USA amongst donors of matched quality, using probability of acceptance as a marker of quality. Results Eurotransplant reported donors were older with more cardiovascular risk factors but with higher utilization than in the USA (70% vs. 44%). Donor age, smoking history, and diabetes mellitus predicted non-acceptance in the USA and, by a lesser magnitude, in Eurotransplant; donor obesity and hypertension predicted non-acceptance in the USA only. Achieving Eurotransplant-level utilization amongst the top 30%–50% of donors (by quality) would produce an additional 506–930 US HTs annually. Conclusions Eurotransplant countries exhibit more liberal donor heart acceptance practices than the USA. Adopting similar acceptance practices could help alleviate the scarcity of donor hearts and reduce waitlist morbidity in the USA.</p

    Ex-Vivo Preservation with the Organ Care System in High Risk Heart Transplantation

    No full text
    Objective: Ex vivo organ perfusion is an advanced preservation technique that allows graft assessment and extended ex situ intervals. We hypothesized that its properties might be especially beneficial for high-risk recipients and/or donors with extended criteria. Methods: We reviewed the outcomes of 119 consecutive heart transplant patients, which were divided into two groups: A (OCS) vs. B (conventional). Ex vivo organ perfusion was performed using the Organ Care System (OCS). Indications for OCS-usage were expected ischemic time of &gt;4 h or &gt;2 h plus given extended donor criteria. Results: Both groups included mostly redo cases (A: 89.7% vs. B: 78.4%; p = 0.121). Incidences of donors with previous cardiac arrest (%) (A: 32.4 vs. B: 22.2; p &lt; 0.05) or LV-hypertrophy (%) (A: 19.1 vs. B: 8.3; p = 0.119) were also increased in Group A. Ex situ time (min) was significantly longer in Group A (A: 381 (74) vs. B: 228 (43); p &lt; 0.05). Ventilation time (days) (A: 10.0 (19.9) vs. B: 24.3 (43.2); p = 0.057), postoperative need for ECLS (%) (A: 25.0 vs. B: 39.2; p = 0.112) and postoperative dialysis (chronic) (%) (A: 4.4 vs. B: 27.5; p &lt; 0.001) were numerically better in the OCS group, without any difference in the occurrence of early graft rejection. The 30-d-survival (A: 92.4% vs. B: 90.2%; p = 0.745) and mid-term survival were statistically not different between both groups. Conclusions: OCS heart allowed safe transplantation of surgically complex recipients with excellent one-year outcomes, despite long preservation times and unfavourable donor characteristics. Furthermore, we observed trends towards decreased ventilation times and fewer ECLS treatments. In times of reduced organ availability and increasing recipient complexity, OCS heart is a valuable instrument that enables otherwise infeasible allocations and contributes to increase surgical safety

    A Proposal for Early Dosing Regimens in Heart Transplant Patients Receiving Thymoglobulin and Calcineurin Inhibition

    No full text
    There is currently no consensus regarding the dose or duration of rabbit antithymocyte globulin (rATG) induction in different types of heart transplant patients, or the timing and intensity of initial calcineurin inhibitor (CNI) therapy in rATG-treated individuals. Based on limited data and personal experience, the authors propose an approach to rATG dosing and initial CNI administration. Usually rATG is initiated immediately after exclusion of primary graft failure, although intraoperative initiation may be appropriate in specific cases. A total rATG dose of 4.5 to 7.5 mg/kg is advisable, tailored within that range according to immunologic risk and adjusted according to immune monitoring. Lower doses (eg, 3.0 mg/kg) of rATG can be used in patients at low immunological risk, or 1.5 to 2.5 mg/kg for patients with infection on mechanical circulatory support. The timing of CNI introduction is dictated by renal recovery, varying between day 3 and day 0 after heart transplantation, and the initial target exposure is influenced by immunological risk and presence of infection. Rabbit antithymocyte globulin and CNI dosing should not overlap except in high-risk cases. There is a clear need for more studies to define the optimal dosing regimens for rATG and early CNI exposure according to risk profile in heart transplantation

    A Review of Induction with Rabbit Antithymocyte Globulin in Pediatric Heart Transplant Recipients

    Full text link
    Pediatric heart transplantation (pHTx) represents only a small proportion of cardiac transplants. Due to these low numbers, clinical data relating to induction therapy in this special population are far less extensive than for adults. Induction is used more widely in pHTx than in adults, mainly because of early steroid withdrawal or complete steroid avoidance. Antithymocyte globulin (ATG) is the most frequent choice for induction in pHTx, and rabbit antithymocyte globulin (rATG, Thymoglobulin®) (Sanofi Genzyme) is the most widely-used ATG preparation. In the absence of large, prospective, blinded trials, we aimed to review the current literature and databases for evidence regarding the use, complications, and dosages of rATG. Analyses from registry databases suggest that, overall, ATG preparations are associated with improved graft survival compared to interleukin-2 receptor antagonists. Advantages for the use of rATG have been shown in low-risk patients given tacrolimus and mycophenolate mofetil in a steroid-free regimen, in sensitized patients with pre-formed alloantibodies and/or a positive donor-specific crossmatch, and in ABO-incompatible pHTx. Registry and clinical data have indicated no increased risk of infection or post-transplant lymphoproliferative disorder in children given rATG after pHTx. A total rATG dose in the range 3.5-7.5 mg/kg is advisable

    Intracerebral Hemorrhage in COVID-19 Patients with Pulmonary Failure: A Propensity Score-Matched Registry Study

    No full text
    Background!#!Hypercoagulability in Coronavirus Disease 2019 (COVID-19) causes deep vein thrombosis and pulmonary embolism necessitating systemic anticoagulation. Case reports of intracerebral hemorrhages in ventilated COVID-19 patients warrant precaution. It is unclear, however, if COVID-19 patients with acute respiratory distress syndrome (ARDS) with or without veno-venous extracorporeal membrane oxygenation therapy (VV-ECMO) have more intracerebral hemorrhages (ICH) compared to other ARDS patients.!##!Methods!#!We conducted a retrospective observational single-center study enrolling all patients with ARDS from 01/2018 to 05/2020. PCR-positive SARS-CoV-2 patients with ARDS were allocated to the COVID-19 group. Propensity score matching was performed for age, VV-ECMO, and bleeding risk.!##!Results!#!A total of 163 patients with moderate or severe ARDS were identified, 47 (28.8%) in the COVID-19 group, and 116 (71.2%) in the non-COVID-19 group. In 63/163 cases (38.7%), VV-ECMO therapy was required. The ICU survival was 52.8%. COVID-19 patients were older, more often male, and exhibited a lower SOFA score, but the groups showed similar rates of VV-ECMO therapy. Treatments with antiplatelet agents (p = 0.043) and therapeutic anticoagulation (p = 0.028) were significantly more frequent in the COVID-19 patients. ICH was detected in 22 patients (13.5%) with no statistical difference between the groups (11.2 vs. 19.1% without and with SARS-CoV-2, respectively, p = 0.21). Propensity score matching confirmed similar rates of ICH in both groups (12.8 vs. 19.1% without and with SARS-CoV-2, respectively, p = 0.57), thus leveling out possible confounders.!##!Conclusions!#!Intracerebral hemorrhage was detected in every tenth patient with ARDS. Despite statistically higher rates of antiplatelet therapy and therapeutic anticoagulation in COVID-19 patients, we found a similar rate of ICH in patients with ARDS due to COVID-19 compared to other causes of ARDS
    corecore