1,812 research outputs found
From Isotopes to TK Interviews: Towards Interdisciplinary Research in Fort Resolution and the Slave River Delta, Northwest Territories
Evolving research in Fort Resolution and the Slave River Delta, Northwest Territories, aims to improve understanding of how the natural ecosystem functions and responds to various environmental stressors, as well as to enhance the stewardship of natural resources and the capacity of local residents to respond to change. We seek to integrate approaches that span the natural and social sciences and traditional knowledge understandings of change, employing a research design developed in response to the concerns of a northern community. In doing so, we have strived for a research process that is collaborative, interdisciplinary, policy-oriented, and reflective of northern priorities. These elements characterize the new northern research paradigm increasingly promoted by various federal funding agencies, northern partners, and communities. They represent a holistic perspective in the pursuit of solutions to address complex environmental and socioeconomic concerns about impacts of climate change and resource development on northern societies. However, efforts to fulfill the objectives of this research paradigm are associated with a host of on-the-ground challenges. These challenges include (but are not restricted to) developing effective community partnerships and collaboration and documenting change through interdisciplinary approaches. Here we provide an overview of the components that comprise our interdisciplinary research program and offer an accounting of our formative experiences in confronting these challenges
Negative emotional stimuli reduce contextual cueing but not response times in inefficient search
In visual search, previous work has shown that negative stimuli narrow the focus of attention and speed reaction times (RTs). This paper investigates these two effects by first asking whether negative emotional stimuli narrow the focus of attention to reduce the learning of a display context in a contextual cueing task and, second, whether exposure to negative stimuli also reduces RTs in inefficient search tasks. In Experiment 1, participants viewed either negative or neutral images (faces or scenes) prior to a contextual cueing task. In a typical contextual cueing experiment, RTs are reduced if displays are repeated across the experiment compared with novel displays that are not repeated. The results showed that a smaller contextual cueing effect was obtained after participants viewed negative stimuli than when they viewed neutral stimuli. However, in contrast to previous work, overall search RTs were not faster after viewing negative stimuli (Experiments 2 to 4). The findings are discussed in terms of the impact of emotional content on visual processing and the ability to use scene context to help facilitate search
Genomes of Gardnerella Strains Reveal an Abundance of Prophages within the Bladder Microbiome
Bacterial surveys of the vaginal and bladder human microbiota have revealed an abundance of many similar bacterial taxa. As the bladder was once thought to be sterile, the complex interactions between microbes within the bladder have yet to be characterized. To initiate this process, we have begun sequencing isolates, including the clinically relevant genus Gardnerella. Herein, we present the genomic sequences of four Gardnerella strains isolated from the bladders of women with symptoms of urgency urinary incontinence; these are the first Gardnerella genomes produced from this niche. Congruent to genomic characterization of Gardnerella isolates from the reproductive tract, isolates from the bladder reveal a large pangenome, as well as evidence of high frequency horizontal gene transfer. Prophage gene sequences were found to be abundant amongst the strains isolated from the bladder, as well as amongst publicly available Gardnerella genomes from the vagina and endometrium, motivating an in depth examination of these sequences. Amongst the 39 Gardnerella strains examined here, there were more than 400 annotated prophage gene sequences that we could cluster into 95 homologous groups; 49 of these groups were unique to a single strain. While many of these prophages exhibited no sequence similarity to any lytic phage genome, estimation of the rate of phage acquisition suggests both vertical and horizontal acquisition. Furthermore, bioinformatic evidence indicates that prophage acquisition is ongoing within both vaginal and bladder Gardnerella populations. The abundance of prophage sequences within the strains examined here suggests that phages could play an important role in the species’ evolutionary history and in its interactions within the complex communities found in the female urinary and reproductive tracts
Cataclysmic Variables from SDSS II. The Second Year
The first full year of operation following the commissioning year of the
Sloan Digital Sky Survey has revealed a wide variety of newly discovered
cataclysmic variables. We show the SDSS spectra of forty-two cataclysmic
variables observed in 2002, of which thirty-five are new classifications, four
are known dwarf novae (CT Hya, RZ Leo, T Leo and BZ UMa), one is a known CV
identified from a previous quasar survey (Aqr1) and two are known ROSAT or
FIRST discovered CVs (RX J09445+0357, FIRST J102347.6+003841). The SDSS
positions, colors and spectra of all forty-two systems are presented. In
addition, the results of follow-up studies of several of these objects identify
the orbital periods, velocity curves and polarization that provide the system
geometry and accretion properties. While most of the SDSS discovered systems
are faint (>18th mag) with low accretion rates (as implied from their spectral
characteristics), there are also a few bright objects which may have escaped
previous surveys due to changes in the mass transfer rate.Comment: Accepted for publication in The Astronomical Journal, Vol. 126, Sep.
2003, 44 pages, 25 figures (now with adjacent captions), AASTeX v5.
Recommended from our members
Planarian regeneration in space: Persistent anatomical, behavioral, and bacteriological changes induced by space travel
Abstract Regeneration is regulated not only by chemical signals but also by physical processes, such as bioelectric gradients. How these may change in the absence of the normal gravitational and geomagnetic fields is largely unknown. Planarian flatworms were moved to the International Space Station for 5 weeks, immediately after removing their heads and tails. A control group in spring water remained on Earth. No manipulation of the planaria occurred while they were in orbit, and space‐exposed worms were returned to our laboratory for analysis. One animal out of 15 regenerated into a double‐headed phenotype—normally an extremely rare event. Remarkably, amputating this double‐headed worm again, in plain water, resulted again in the double‐headed phenotype. Moreover, even when tested 20 months after return to Earth, the space‐exposed worms displayed significant quantitative differences in behavior and microbiome composition. These observations may have implications for human and animal space travelers, but could also elucidate how microgravity and hypomagnetic environments could be used to trigger desired morphological, neurological, physiological, and bacteriomic changes for various regenerative and bioengineering applications
Exogenous spatial precuing reliably modulates object processing but not object substitution masking
Object substitution masking (OSM) is used in behavioral and imaging studies to investigate processes associated with the formation of a conscious percept. Reportedly, OSM occurs only when visual attention is diffusely spread over a search display or focused away from the target location. Indeed, the presumed role of spatial attention is central to theoretical accounts of OSM and of visual processing more generally (Di Lollo, Enns, & Rensink, Journal of Experimental Psychology: General 129:481–507, 2000). We report a series of five experiments in which valid spatial precuing is shown to enhance the ability of participants to accurately report a target but, in most cases, without affecting OSM. In only one experiment (Experiment 5) was a significant effect of precuing observed on masking. This is in contrast to the reliable effect shown across all five experiments in which precuing improved overall performance. The results are convergent with recent findings from Argyropoulos, Gellatly, and Pilling (Journal of Experimental Psychology: Human Perception and Performance 39:646–661, 2013), which show that OSM is independent of the number of distractor items in a display. Our results demonstrate that OSM can operate independently of focal attention. Previous claims of the strong interrelationship between OSM and spatial attention are likely to have arisen from ceiling or floor artifacts that restricted measurable performance
Ultracompact AM CVn Binaries from the Sloan Digital Sky Survey: Three Candidates Plus the First Confirmed Eclipsing System
AM CVn systems are a rare (about a dozen previously known) class of
cataclysmic variables, arguably encompassing the shortest orbital periods (down
to about 10 minutes) of any known binaries. Both binary components are thought
to be degenerate (or partially so), likely with mass-transfer from a
helium-rich donor onto a white dwarf, driven by gravitational radiation.
Although rare, AM CVn systems are of high interest as possible SN Ia
progenitors, and because they are predicted to be common sources of gravity
waves in upcoming experiments such as LISA. We have identified four new AM CVn
candidates from the Sloan Digital Sky Survey (SDSS) spectral database. All four
show hallmark spectroscopic characteristics of the AM CVn class: each is devoid
of hydrogen features, and instead shows a spectrum dominated by helium. All
four show double-peaked emission, indicative of helium-dominated accretion
disks. Limited time-series CCD photometric follow-on data have been obtained
for three of the new candidates from the ARC 3.5m; most notably, a 28.3 minute
binary period with sharp, deep eclipses is discovered in one case, SDSS
J0926+3624. This is the first confirmed eclipsing AM CVn, and our data allow
initial estimates of binary parameters for this ultracompact system. The four
new SDSS objects also provide a substantial expansion of the currently
critically-small sample of AM CVn systems.Comment: 7 pages, 3 figures, submitted to the Astronomical Journa
- …