53 research outputs found
Species Abundance Modelling of Arctic-Boreal Zone Ducks Informed by Satellite Remote Sensing
The Arctic-Boreal zone (ABZ) covers over 26 million km2 and is home to numerous duck species; however, understanding the spatiotemporal distribution of their populations across this vast landscape is challenging, in part due to extent and data scarcity. Species abundance models for ducks in the ABZ commonly use static (time invariant) habitat covariates to inform predictions, such as wetland type and extent maps. For the first time in this region, we developed species abundance models using high-resolution, time-varying wetland inundation data produced using satellite remote sensing methods. This data captured metrics of surface water extent and inundated vegetation in the Peace Athabasca Delta, Canada, which is within the NASA Arctic Boreal Vulnerability Experiment core domain. We used generalized additive mixed models to demonstrate the improved predictive value of this novel data set over time-invariant data. Our findings highlight both the potential complementarity and efficacy of dynamic wetland inundation information for improving estimation of duck abundance and distribution at high latitudes. Further, these data can be an asset to spatial targeting of biodiversity conservation efforts and developing model-based metrics of their success under rapidly changing climatic conditions
The state of the Martian climate
60°N was +2.0°C, relative to the 1981â2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
Consistency of satellite climate data records for Earth system monitoring
Climate Data Records (CDRs) of Essential Climate Variables (ECVs) as defined by the Global Climate Observing System (GCOS) derived from satellite instruments help to characterize the main components of the Earth system, to identify the state and evolution of its processes, and to constrain the budgets of key cycles of water, carbon and energy. The Climate Change Initiative (CCI) of the European Space Agency (ESA) coordinates the derivation of CDRs for 21 GCOS ECVs. The combined use of multiple ECVs for Earth system science applications requires consistency between and across their respective CDRs. As a comprehensive definition for multi-ECV consistency is missing so far, this study proposes defining consistency on three levels: (1) consistency in format and metadata to facilitate their synergetic use (technical level); (2) consistency in assumptions and auxiliary datasets to minimize incompatibilities among datasets (retrieval level); and (3) consistency between combined or multiple CDRs within their estimated uncertainties or physical constraints (scientific level).
Analysing consistency between CDRs of multiple quantities is a challenging task and requires coordination between different observational communities, which is facilitated by the CCI program. The inter-dependencies of the satellite-based CDRs derived within the CCI program are analysed to identify where consistency considerations are most important. The study also summarizes measures taken in CCI to ensure consistency on the technical level, and develops a concept for assessing consistency on the retrieval and scientific levels in the light of underlying physical knowledge. Finally, this study presents the current status of consistency between the CCI CDRs and future efforts needed to further improve it
State of the climate in 2018
In 2018, the dominant greenhouse gases released into Earthâs atmosphereâcarbon dioxide, methane, and nitrous oxideâcontinued their increase. The annual global average carbon dioxide concentration at Earthâs surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W mâ2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the yearâs end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981â2010 average, tying for third highest in the 118-year record, following 2016 and 2017. Juneâs Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°â0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000â18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decadeâ1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981â2010 average of 82. Eleven tropical cyclones reached SaffirâSimpson scale Category 5 intensity. North Atlantic Major Hurricane Michaelâs landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and RĂ©union Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at WaipÄ Gardens (Kauai) on 14â15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000â10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)
Applying Machine Learning and Time-Series Analysis on Sentinel-1A SAR/InSAR for Characterizing Arctic Tundra Hydro-Ecological Conditions
Synthetic aperture radar (SAR) is a widely used tool for Earth observation activities. It is particularly effective during times of persistent cloud cover, low light conditions, or where in situ measurements are challenging. The intensity measured by a polarimetric SAR has proven effective for characterizing Arctic tundra landscapes due to the unique backscattering signatures associated with different cover types. However, recently, there has been increased interest in exploiting novel interferometric SAR (InSAR) techniques that rely on both the amplitude and absolute phase of a pair of acquisitions to produce coherence measurements, although the simultaneous use of both intensity and interferometric coherence in Arctic tundra image classification has not been widely tested. In this study, a time series of dual-polarimetric (VV, VH) Sentinel-1 SAR/InSAR data collected over one growing season, in addition to a digital elevation model (DEM), was used to characterize an Arctic tundra study site spanning a hydrologically dynamic coastal delta, open tundra, and high topographic relief from mountainous terrain. SAR intensity and coherence patterns based on repeat-pass interferometry were analyzed in terms of ecological structure (i.e., graminoid, or woody) and hydrology (i.e., wet, or dry) using machine learning methods. Six hydro-ecological cover types were delineated using time-series statistical descriptors (i.e., mean, standard deviation, etc.) as model inputs. Model evaluations indicated SAR intensity to have better predictive power than coherence, especially for wet landcover classes due to temporal decorrelation. However, accuracies improved when both intensity and coherence were used, highlighting the complementarity of these two measures. Combining time-series SAR/InSAR data with terrain derivatives resulted in the highest per-class F1 score values, ranging from 0.682 to 0.955. The developed methodology is independent of atmospheric conditions (i.e., cloud cover or sunlight) as it does not rely on optical information, and thus can be regularly updated over forthcoming seasons or annually to support ecosystem monitoring
Proteomic identification of oxidized mitochondrial proteins following experimental traumatic brain injury
Experimental traumatic brain injury (TBI) results in a significant loss of cortical tissue at the site of injury, and in the ensuing hours and days a secondary injury exacerbates this primary injury, resulting in significant neurological dysfunction. The mechanism of the secondary injury is not well understood, but evidence implicates a critical role for mitochondria in this cascade. This mitochondrial dysfunction is believed to involve excitotoxicity, disruption of Ca 2 ïżœ homeostasis, production of reactive oxygen species (ROS), ATP depletion, oxidative damage of mitochondrial proteins, and an overall breakdown of mitochondrial bioenergetics. Although oxidative damage occurs following TBI, the identities of proteins undergoing oxidative modification after TBI have not been investigated. In the present study, we utilized the 3-h post-injury controlled cortical impact model of experimental TBI in 20 young adult male SpragueâDawley rats, coupled with proteomics to identify specific mitochondrial fraction proteins from the cortex and hippocampus that were oxidatively modified after TBI. We identified, from the cortex, pyruvate dehydrogenase, voltage-dependent anion channel, fumarate hydratase 1, ATP synthase, and prohibitin. From the hippocampus, we identified cytochrome C oxidase Va, isovaleryl coenzyme A dehydrogenase, enolase-1, and glyceraldehyde-3-phosphat
Original Contribution
Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic miceâA model of familial amyotrophic lateral sclerosi
- âŠ