353 research outputs found

    Influenza virus differentially activates mTORC1 and mTORC2 signaling to maximize late stage replication

    Get PDF
    <div><p>Influenza A virus usurps host signaling factors to regulate its replication. One example is mTOR, a cellular regulator of protein synthesis, growth and motility. While the role of mTORC1 in viral infection has been studied, the mechanisms that induce mTORC1 activation and the substrates regulated by mTORC1 during influenza virus infection have not been established. In addition, the role of mTORC2 during influenza virus infection remains unknown. Here we show that mTORC2 and PDPK1 differentially phosphorylate AKT upon influenza virus infection. PDPK1-mediated phoshorylation of AKT at a distinct site is required for mTORC1 activation by influenza virus. On the other hand, the viral NS1 protein promotes phosphorylation of AKT at a different site via mTORC2, which is an activity dispensable for mTORC1 stimulation but known to regulate apoptosis. Influenza virus HA protein and down-regulation of the mTORC1 inhibitor REDD1 by the virus M2 protein promote mTORC1 activity. Systematic phosphoproteomics analysis performed in cells lacking the mTORC2 component Rictor in the absence or presence of Torin, an inhibitor of both mTORC1 and mTORC2, revealed mTORC1-dependent substrates regulated during infection. Members of pathways that regulate mTORC1 or are regulated by mTORC1 were identified, including constituents of the translation machinery that once activated can promote translation. mTORC1 activation supports viral protein expression and replication. As mTORC1 activation is optimal midway through the virus life cycle, the observed effects on viral protein expression likely support the late stages of influenza virus replication when infected cells undergo significant stress.</p></div

    Galaxy And Mass Assembly (GAMA) : refining the local galaxy merger rate using morphological information

    Get PDF
    KRVS acknowledges the Science and Technology Facilities Council (STFC) for providing funding for this project, as well as the Government of Catalonia for a research travel grant (ref. 2010 BE-00268) to begin this project at the University of Nottingham. PN acknowledges the support of the Royal Society through the award of a University Research Fellowship and the European Research Council, through receipt of a Starting Grant (DEGAS-259586).We use the Galaxy And Mass Assembly (GAMA) survey to measure the local Universe mass-dependent merger fraction and merger rate using galaxy pairs and the CAS (concentration, asymmetry, and smoothness) structural method, which identifies highly asymmetric merger candidate galaxies. Our goals are to determine which types of mergers produce highly asymmetrical galaxies and to provide a new measurement of the local galaxy major merger rate. We examine galaxy pairs at stellar mass limits down to M* = 108 M⊙ with mass ratios of 4:1) the lower mass companion becomes highly asymmetric, whereas the larger galaxy is much less affected. The fraction of highly asymmetric paired galaxies which have a major merger companion is highest for the most massive galaxies and drops progressively with decreasing mass. We calculate that the mass-dependent major merger fraction is fairly constant at ∼1.3–2 per cent within 109.5 < M* < 1011.5 M⊙, and increases to ∼4 per cent at lower masses. When the observability time-scales are taken into consideration, the major merger rate is found to approximately triple over the mass range we consider. The total comoving volume major merger rate over the range 108.0 < M* < 1011.5 M⊙ is (1.2 ± 0.5) × 10−3 h370 Mpc−3 Gyr−1.Publisher PDFPeer reviewe

    The furan microsolvation blind challenge for quantum chemical methods: First steps

    Get PDF
    © 2018 Author(s). Herein we present the results of a blind challenge to quantum chemical methods in the calculation of dimerization preferences in the low temperature gas phase. The target of study was the first step of the microsolvation of furan, 2-methylfuran and 2,5-dimethylfuran with methanol. The dimers were investigated through IR spectroscopy of a supersonic jet expansion. From the measured bands, it was possible to identify a persistent hydrogen bonding OH-O motif in the predominant species. From the presence of another band, which can be attributed to an OH-π interaction, we were able to assert that the energy gap between the two types of dimers should be less than or close to 1 kJ/mol across the series. These values served as a first evaluation ruler for the 12 entries featured in the challenge. A tentative stricter evaluation of the challenge results is also carried out, combining theoretical and experimental results in order to define a smaller error bar. The process was carried out in a double-blind fashion, with both theory and experimental groups unaware of the results on the other side, with the exception of the 2,5-dimethylfuran system which was featured in an earlier publication

    Giardiasis: Impact on child growth

    Get PDF
    Artículo científico -- Universidad de Costa Rica. Instituto de Investigaciones en Salud, 1986Chronic disorders of the gastrointestinal tract may impair physical growth during infancy and childhood. Growth retardation has been particularly well documented in children with Crohn's disease and coeliac disease in which growth retardation may occur in the absence of gastrointestinal symptoms. Recurrent and persistent infection in infancy and childhood is also associated with growth retardation, the major offenders being infections of the respiratory and gastrointestinal tracts. The pathogenic mechanisms of growth disturbance in chronic disease are poorly understood. Possible candidates include reduced dietary intake as a result of anorexia, food withholding following cultural practice or physician's advice and increased energy expenditure associated with fever and infection. Nutritional deprivation due to intestinal malabsorption is probably a less important factor in inflammatory bowel disease but may be more relevant in coeliac disease and infective disorders of the intestine. Although Giardia is now an established intestinal pathogen its relationship to child growth and development has not been clearly defined. However, giardiasis (1) frequently affects infants and children; (2) is known to cause morphological damage of the small intestine and malabsorption of a variety of nutrients 15 ; (3) is not always a self-limiting infection and may persist for many weeks or months; (4) has been shown to impair physical growth in some individuals with Giardia infection. There is, however, very little population-based data on the effect of Giardia infection on physical growth during infancy and childhood and thus the impact of this parasite at a community level is largely unknown. The parasite may be excreted by apparently asymptomatic individuals and thus before widespread strategies for the control of this infection are introduced the extent of its clinical impact must be established.Universidad de Costa Rica. Instituto de Investigaciones en Salud.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto de Investigaciones en Salud (INISA

    Low-Temperature Growth of Axial Si/Ge Nanowire Heterostructures Enabled by Trisilane

    Get PDF
    Axial Si/Ge heterostructure nanowires, despite their promise in applications ranging from electronics to thermal transport, remain notoriously difficult to synthesize. Here, we grow axial Si/Ge heterostructures at low temperatures using a Au catalyst with a combination of trisilane and digermane. This approach yields, as determined with detailed electron microscopy characterization, arrays of epitaxial Si/Ge nanowires with excellent morphologies and purely axial composition profiles. Our data indicate that heterostructure formation can occur via the vapor-liquid-solid or vapor-solid-solid mechanism. These findings highlight the importance of precursor chemistry in semiconductor nanowire synthesis and open the door to Si/Ge nanowires with programmable quantum domains

    Intrafamilial variable phenotype including corticobasal syndrome in a family with p.P301L mutation in the MAPT gene: first report in South America

    Get PDF
    Frontotemporal lobar degeneration is a neuropathological disorder that causes a variety of clinical syndromes including frontotemporal dementia (FTD), progressive supranuclear palsy, and corticobasal syndrome (CBS). FTD associated with parkinsonism occurs frequently as a result of mutations in the C9orf72 gene and also in the genes coding for the protein associated with microtubule tau (MAPT) and progranulin (GRN) on chromosome 17 (FTDP-17). Herein, we report an Argentinean family, of Basque ancestry, with an extensive family history of behavioral variant of FTD. Twenty-one members over 6 generations composed the pedigree. An extensive neurologic and neurocognitive examination was performed on 2 symptomatic individuals and 3 nonsymptomatic individuals. Two different phenotypes were identified among affected members, CBS in the proband and FTD in his brother. DNA was extracted from blood for these 5 individuals and whole-exome sequencing was performed on 3 of them followed by Sanger sequencing of candidate genes on the other 2. In both affected individuals, a missense mutation (p.P301L; rs63751273) in exon 10 of the MAPT gene (chr17q21.3) was identified. Among MAPT mutations, p.P301L is the most frequently associated to different phenotypes: (1) aggressive, symmetrical, and early-onset Parkinsonism; (2) late parkinsonism associated with FTD; and (3) progressive supranuclear palsy but only exceptionally it is reported associated to CBS. This is the first report of the occurrence of the p.P301L-MAPT mutation in South America and supports the marked phenotypic heterogeneity among members of the same family as previously reported

    Neoadjuvant Talazoparib in Patients With Germline BRCA1/2 Mutation-Positive, Early-Stage Triple-Negative Breast Cancer: Exploration of Tumor BRCA Mutational Status

    Get PDF
    BACKGROUND: Talazoparib monotherapy in patients with germline BRCA-mutated, early-stage triple-negative breast cancer (TNBC) showed activity in the neoadjuvant setting in the phase II NEOTALA study (NCT03499353). These biomarker analyses further assessed the mutational landscape of the patients enrolled in the NEOTALA study. METHODS: Baseline tumor tissue from the NEOTALA study was tested retrospectively using FoundationOne RESULTS: All patients enrolled (N = 61) had TNBC. In the biomarker analysis population, 75.0% (39/52) and 25.0% (13/52) of patients exhibited BRCA1 and BRCA2 mutations, respectively. Strong concordance (97.8%) was observed between tumor BRCA and germline BRCA mutations, and 90.5% (38/42) of patients with tumor BRCA mutations evaluable for somatic-germline-zygosity were predicted to exhibit BRCA loss of heterozygosity (LOH). No patients had non-BRCA germline DNA damage response (DDR) gene variants with known/likely pathogenicity, based on a panel of 14 non-BRCA DDR genes. Ninety-eight percent of patients had TP53 mutations. Genomic LOH, assessed continuously or categorically, was not associated with response. CONCLUSION: The results from this exploratory biomarker analysis support the central role of BRCA and TP53 mutations in tumor pathobiology. Furthermore, these data support assessing germline BRCA mutational status for molecular eligibility for talazoparib in patients with TNBC

    Increased circulating T cell reactivity to GM3 and GQ1b gangliosides in primary progressive multiple sclerosis

    Get PDF
    We have previously shown that patients with primary progressive multiple sclerosis (MS) have significantly elevated plasma levels of antibody to GM3 ganglioside compared to patients with relapsing-remitting MS, healthy subjects and patients with other neurological diseases. Anti-GM3 antibody levels were elevated also in patients with secondary progressive MS but to a lesser extent than in primary progressive MS. As gangliosides are particularly enriched in the axonal membrane, these findings suggested that antiganglioside immune responses might contribute to the axonal damage in progressive forms of MS. The present study was performed to determine whether peripheral blood T cell responses to GM3 are also increased in progressive MS. Blood was collected from 98 untreated patients with MS (40 with relapsing-remitting, 27 with secondary progressive and 31 with primary progressive MS), 50 healthy subjects and 24 patients with other disorders of the CNS, and reactivity to GM1, GM3, GD1a, GD1b, GD3, GT1b, GQ1b and sulphatide was assessed by 6-day T cell proliferation assays. Increased T cell reactivity to GM3 and GQ1b occurred significantly more often in patients with primary progressive MS than in healthy subjects and patients with other CNS diseases. These findings suggest that ganglioside-specific T cells may contribute to the axonal damage in primary progressive MS. (C) 2002 Elsevier Science Ltd. All rights reserved

    The coordination of cell growth during fission yeast mating requires Ras1-GTP hydrolysis

    Get PDF
    The spatial and temporal control of polarity is fundamental to the survival of all organisms. Cells define their polarity using highly conserved mechanisms that frequently rely upon the action of small GTPases, such as Ras and Cdc42. Schizosaccharomyces pombe is an ideal system with which to study the control of cell polarity since it grows from defined tips using Cdc42-mediated actin remodeling. Here we have investigated the importance of Ras1-GTPase activity for the coordination of polarized cell growth during fission yeast mating. Following pheromone stimulation, Ras1 regulates both a MAPK cascade and the activity of Cdc42 to enable uni-directional cell growth towards a potential mating partner. Like all GTPases, when bound to GTP, Ras1 adopts an active conformation returning to an inactive state upon GTP-hydrolysis, a process accelerated through interaction with negative regulators such as GAPs. Here we show that, at low levels of pheromone stimulation, loss of negative regulation of Ras1 increases signal transduction via the MAPK cascade. However, at the higher concentrations observed during mating, hyperactive Ras1 mutations promote cell death. We demonstrate that these cells die due to their failure to coordinate active Cdc42 into a single growth zone resulting in disorganized actin deposition and unsustainable elongation from multiple tips. These results provide a striking demonstration that the deactivation stage of Ras signaling is fundamentally important in modulating cell polarity
    corecore