99 research outputs found

    Novel biomarkers in critical care: utility or futility?

    Get PDF
    One of the holy grails of modern medicine, across a range of clinical sub-specialties, is establishing highly sensitive and specific biomarkers for various diseases. Significant success has been achieved in some of these clinical areas, most notably identifying high-sensitivity C-reactive peptide, troponin I/T and brain natriuretic peptide as significant prognosticators for both the acute outcome and the development of cardiovascular pathology. However, it is highly debatable whether this translates to complex, multi-system pathophysiological insults. Is critical care immune from the application of these novel biomarkers, given the numerous confounding factors interfering with their interpretation

    Understanding gastrointestinal perfusion in critical care: so near, and yet so far

    Get PDF
    An association between abnormal gastrointestinal perfusion and critical illness has been suggested for a number of years. Much of the data to support this idea comes from studies using gastric tonometry. Although an attractive technology, the interpretation of tonometry data is complex. Furthermore, current understanding of the physiology of gastrointestinal perfusion in health and disease is incomplete. This review considers critically the striking clinical data and basic physiological investigations that support a key role for gastrointestinal hypoperfusion in initiating and/or perpetuating critical disease

    Concepts in hypoxia reborn

    Get PDF
    The human fetus develops in a profoundly hypoxic environment. Thus, the foundations of our physiology are built in the most hypoxic conditions that we are ever likely to experience: the womb. This magnitude of exposure to hypoxia in utero is rarely experienced in adult life, with few exceptions, including severe pathophysiology in critical illness and environmental hypobaric hypoxia at high altitude. Indeed, the lowest recorded levels of arterial oxygen in adult humans are similar to those of a fetus and were recorded just below the highest attainable elevation on the Earth's surface: the summit of Mount Everest. We propose that the hypoxic intrauterine environment exerts a profound effect on human tolerance to hypoxia. Cellular mechanisms that facilitate fetal well-being may be amenable to manipulation in adults to promote survival advantage in severe hypoxemic stress. Many of these mechanisms act to modify the process of oxygen consumption rather than oxygen delivery in order to maintain adequate tissue oxygenation. The successful activation of such processes may provide a new chapter in the clinical management of hypoxemia. Thus, strategies employed to endure the relative hypoxia in utero may provide insights for the management of severe hypoxemia in adult life and ventures to high altitude may yield clues to the means by which to investigate those strategies

    Design and conduct of 'Xtreme Alps' : a double-blind, randomised controlled study of the effects of dietary nitrate supplementation on acclimatisation to high altitude

    Get PDF
    The study of healthy human volunteers ascending to high altitude provides a robust model of the complex physiological interplay that emulates human adaptation to hypoxaemia in clinical conditions. Nitric oxide (NO) metabolism may play an important role in both adaptation to high altitude and response to hypoxaemia during critical illness at sea level. Circulating nitrate and nitrite concentrations can be augmented by dietary supplementation and this is associated with improved exercise performance and mitochondrial efficiency. We hypothesised that the administration of a dietary substance (beetroot juice) rich in nitrate would improve oxygen efficiency during exercise at high altitude by enhancing tissue microcirculatory blood flow and oxygenation. Furthermore, nitrate supplementation would lead to measurable increases in NO bioactivity throughout the body. This methodological manuscript describes the design and conduct of the ‘Xtreme Alps’ expedition, a double-blind randomised controlled trial investigating the effects of dietary nitrate supplementation on acclimatisation to hypobaric hypoxia at high altitude in healthy human volunteers. The primary outcome measure was the change in oxygen efficiency during exercise at high altitude between participants allocated to receive nitrate supplementation and those receiving a placebo. A number of secondary measures were recorded, including exercise capacity, peripheral and microcirculatory blood flow and tissue oxygenation. Results from this study will further elucidate the role of NO in adaption to hypoxaemia and guide clinical trials in critically ill patients. Improved understanding of hypoxaemia in critical illness may provide new therapeutic avenues for interventions that will improve survival in critically ill patients

    Divergent trajectories of cellular bioenergetics, intermediary metabolism and systemic redox status in survivors and non-survivors of critical illness.

    Get PDF
    BACKGROUND: Numerous pathologies result in multiple-organ failure, which is thought to be a direct consequence of compromised cellular bioenergetic status. Neither the nature of this phenotype nor its relevance to survival are well understood, limiting the efficacy of modern life-support. METHODS: To explore the hypothesis that survival from critical illness relates to changes in cellular bioenergetics, we combined assessment of mitochondrial respiration with metabolomic, lipidomic and redox profiling in skeletal muscle and blood, at multiple timepoints, in 21 critically ill patients and 12 reference patients. RESULTS: We demonstrate an end-organ cellular phenotype in critical illness, characterized by preserved total energetic capacity, greater coupling efficiency and selectively lower capacity for complex I and fatty acid oxidation (FAO)-supported respiration in skeletal muscle, compared to health. In survivors, complex I capacity at 48 h was 27% lower than in non-survivors (p = 0.01), but tended to increase by day 7, with no such recovery observed in non-survivors. By day 7, survivors' FAO enzyme activity was double that of non-survivors (p = 0.048), in whom plasma triacylglycerol accumulated. Increases in both cellular oxidative stress and reductive drive were evident in early critical illness compared to health. Initially, non-survivors demonstrated greater plasma total antioxidant capacity but ultimately higher lipid peroxidation compared to survivors. These alterations were mirrored by greater levels of circulating total free thiol and nitrosated species, consistent with greater reductive stress and vascular inflammation, in non-survivors compared to survivors. In contrast, no clear differences in systemic inflammatory markers were observed between the two groups. CONCLUSION: Critical illness is associated with rapid, specific and coordinated alterations in the cellular respiratory machinery, intermediary metabolism and redox response, with different trajectories in survivors and non-survivors. Unravelling the cellular and molecular foundation of human resilience may enable the development of more effective life-support strategies.MRC, Evelyn Trust, Intensive Care Society, Royal Free Charit

    Fluid Optimisation in Emergency Laparotomy (FLO-ELA) Trial: study protocol for a multi-centre randomised trial of cardiac output-guided fluid therapy compared to usual care in patients undergoing major emergency gastrointestinal surgery

    Get PDF
    INTRODUCTION: Postoperative morbidity and mortality in patients undergoing major emergency gastrointestinal surgery are a major burden on healthcare systems. Optimal management of perioperative intravenous fluids may reduce mortality rates and improve outcomes from surgery. Previous small trials of cardiac-output guided haemodynamic therapy algorithms in patients undergoing gastrointestinal surgery have suggested this intervention results in reduced complications and a modest reduction in mortality. However, this existing evidence is based mainly on elective (planned) surgery, with little evaluation in the emergency setting. There are fundamental clinical and pathophysiological differences between the planned and emergency surgical setting which may influence the effects of this intervention. A large definitive trial in emergency surgery is needed to confirm or refute the potential benefits observed in elective surgery and to inform widespread clinical practice. METHODS: The FLO-ELA trial is a multi-centre, parallel-group, open, randomised controlled trial. 3138 patients aged 50 and over undergoing major emergency gastrointestinal surgery will be randomly allocated in a 1:1 ratio using minimisation to minimally invasive cardiac output monitoring to guide protocolised administration of intra-venous fluid, or usual care without cardiac output monitoring. The trial intervention will be carried out during surgery and for up to 6 h postoperatively. The trial is funded through an efficient design call by the National Institute for Health and Care Research Health Technology Assessment (NIHR HTA) programme and uses existing routinely collected datasets for the majority of data collection. The primary outcome is the number of days alive and out of hospital within 90 days of randomisation. Participants and those delivering the intervention will not be blinded to treatment allocation. Participant recruitment started in September 2017 with a 1-year internal pilot phase and is ongoing at the time of publication. DISCUSSION: This will be the largest contemporary randomised trial examining the effectiveness of perioperative cardiac output-guided haemodynamic therapy in patients undergoing major emergency gastrointestinal surgery. The multi-centre design and broad inclusion criteria support the external validity of the trial. Although the clinical teams delivering the trial interventions will not be blinded, significant trial outcome measures are objective and not subject to detection bias. TRIAL REGISTRATION: ISRCTN 14729158. Registered on 02 May 2017

    Metabolomic and lipidomic plasma profile changes in human participants ascending to Everest Base Camp.

    Get PDF
    At high altitude oxygen delivery to the tissues is impaired leading to oxygen insufficiency (hypoxia). Acclimatisation requires adjustment to tissue metabolism, the details of which remain incompletely understood. Here, metabolic responses to progressive environmental hypoxia were assessed through metabolomic and lipidomic profiling of human plasma taken from 198 human participants before and during an ascent to Everest Base Camp (5,300 m). Aqueous and lipid fractions of plasma were separated and analysed using proton (1H)-nuclear magnetic resonance spectroscopy and direct infusion mass spectrometry, respectively. Bayesian robust hierarchical regression revealed decreasing isoleucine with ascent alongside increasing lactate and decreasing glucose, which may point towards increased glycolytic rate. Changes in the lipid profile with ascent included a decrease in triglycerides (48-50 carbons) associated with de novo lipogenesis, alongside increases in circulating levels of the most abundant free fatty acids (palmitic, linoleic and oleic acids). Together, this may be indicative of fat store mobilisation. This study provides the first broad metabolomic account of progressive exposure to environmental hypobaric hypoxia in healthy humans. Decreased isoleucine is of particular interest as a potential contributor to muscle catabolism observed with exposure to hypoxia at altitude. Substantial changes in lipid metabolism may represent important metabolic responses to sub-acute exposure to environmental hypoxia.King's College London, National Institute of Health Researc

    The effects of cancer therapies on physical fitness before oesophagogastric cancer surgery: a prospective, blinded, multi-centre, observational, cohort study [version 1; peer review: 2 approved]

    Get PDF
    Background: Neoadjuvant cancer treatment is associated with improved survival following major oesophagogastric cancer surgery. The impact of neoadjuvant chemo/chemoradiotherapy on physical fitness and operative outcomes is however unclear. This study aims to investigate the impact of neoadjuvant chemo/chemoradiotherapy on fitness and post-operative mortality. Methods: Patients with oesophagogastric cancer scheduled for chemo/chemoradiotherapy and surgery were recruited to a prospective, blinded, multi-centre, observational cohort study. Primary outcomes were changes in fitness with chemo/chemoradiotherapy, measured using cardiopulmonary exercise testing and its association with mortality one-year after surgery. Patients were followed up for re-admission at 30-days, in-hospital morbidity and quality of life (exploratory outcomes). Results: In total, 384 patients were screened, 217 met the inclusion criteria, 160 consented and 159 were included (72% male, mean age 65 years). A total of 132 patients (83%) underwent chemo/chemoradiotherapy, 109 (71%) underwent chemo/chemoradiotherapy and two exercise tests, 100 (63%) completed surgery and follow-up. A significant decline in oxygen uptake at anaerobic threshold and oxygen uptake peak was observed following chemo/chemoradiotherapy: -1.25ml.kg-1.min-1 (-1.80 to -0.69) and -3.02ml.kg-1.min-1 (-3.85 to -2.20); p<0.0001).  Baseline chemo/chemoradiotherapy anaerobic threshold and peak were associated with one-year mortality (HR=0.72, 95%CI 0.59 to 0.88; p=0.001 and HR=0.85, 0.76 to 0.95; p=0.005). The change in physical fitness was not associated with one-year mortality. Conclusion: Chemo/chemoradiotherapy prior to oesophagogastric cancer surgery reduced physical fitness. Lower baseline fitness was associated with reduced overall survival at one-year. Careful consideration of fitness prior to chemo/chemoradiotherapy and surgery is urgently needed
    corecore