5,705 research outputs found

    An Investigation of the Role of Exchange Rates on U.S. Exports of Selected Agricultural Products: 1968-1983

    Get PDF
    An· econometric partial equilibrium trade model of the U.S. corn, wheat, soybean, cotton, and tobacco market is developed for the yearly periods 1968-1983. The effect of real exchange rates, real price, and demand factors on the exports of each commodity is examined to test the hypothesis that monetary factors can affect the agricultural sector. An examination of the elasticities of real price, real exchange rate, and real income indicate that an extremely inelastic response to both price movements and exchange rate adjustments. Foreign buying power is the strongest explanatory variable. An exchange rate linkage with the agricultural sector is not proven.International Relations/Trade,

    Growth of vertically aligned Si wire arrays over large areas (>1 cm^2) with Au and Cu catalysts

    Get PDF
    Arrays of vertically oriented Si wires with diameters of 1.5 ”m and lengths of up to 75 ”m were grown over areas >1 cm^2 by photolithographically patterning an oxide buffer layer, followed by vapor-liquid-solid growth with either Au or Cu as the growth catalyst. The pattern fidelity depended critically on the presence of the oxide layer, which prevented migration of the catalyst on the surface during annealing and in the early stages of wire growth. These arrays can be used as the absorber material in novel photovoltaic architectures and potentially in photonic crystals in which large areas are needed

    Terrestrial microbialites provide constraints on the mesoproterozoic atmosphere

    Full text link
    Palaeoclimate data indicate that Earth surface temperatures have remained largely temperate for the past 3.5 Byr despite significantly lower solar luminosity over this time relative to the present day. There is evidence for episodic early and late Proterozoic glaciation, but little evidence of glaciation in the intervening billion years. A prolonged equable Mesoproterozoic Earth requires elevated greenhouse gas concentrations. Two endmember scenarios have been proposed for maintaining global warmth. These include extremely high pCO2 or more modest pCO2 with higher methane concentrations. This paper reports on the ÎŽ13C of organic matter in 1.1 Ga stromatolites from the Copper Harbor Conglomerate (CHC) of the Mesoproterozoic Midcontinent Rift (North America) and ÎŽ18O and Δ47 temperatures of inorganic stromatolite carbonate to constrain formation and burial conditions and the magnitude of ancient carbon isotope discrimination. CHC sediments have never been heated above ~125–155°C, providing a novel geochemical archive of the ancient environment. Stromatolite Δ47 data record moderate alteration, and therefore, the occluded organic matter was unlikely to have experienced significant thermal alteration after deposition. The ÎŽ13C values of ancient mat organic matter and inorganic carbonate show isotope discrimination (Δp) values ~15.5–18.5‰, similar to modern microbial mats formed in equilibrium with low concentrations of dissolved inorganic carbon. In combination, these data are consistent with a temperate climate Mesoproterozoic biosphere supported by relatively modest pCO2. This result agrees with Atmosphere‐Ocean Global Circulation Model reconstructions for Mesoproterozoic climate using 5–10 times present atmospheric levels pCO2 and pCH4 of >28 ppmv. However, given marine modelling constraints of CH4 production that suggest pCH4 was below 10 ppm, this creates a methane paradox. Either an additional source of CH4 (e.g. from terrestrial ecosystems) or another greenhouse gas, such as N2O, would have been necessary to maintain equable conditions in the Mesoproterozoic.This paper, entitled ‘Terrestrial Microbialites Provide Constraints on the Mesoproterozoic Atmosphere’ offers a new look at 1.1 billion‐year‐old stromatolites in the Mesoproterozoic Midcontinent Rift in Michigan to provide new constraints on pCO2 during the long period of earth’s history that is colloquially known as the ‘boring billion’. New clumped isotope temperature measurements are provided to constrain upper temperature bounds for microbial carbonate formation temperature and post‐depositional thermal alteration, as well as organic and inorganic carbon isotope data that are used to constrain carbon isotope discrimination that is regulated by atmospheric carbon dioxide concentrations.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154283/1/dep279_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154283/2/dep279.pd

    Defect-Seeded Atomic Layer Deposition of Metal Oxides on the Basal Plane of 2D Layered Materials

    Get PDF
    Atomic layer deposition (ALD) on mechanically exfoliated 2D layered materials spontaneously produces network patterns of metal oxide nanoparticles in triangular and linear deposits on the basal surface. The network patterns formed under a range of ALD conditions and were independent of the orientation of the substrate in the ALD reactor. The patterns were produced on MoS2 or HOPG when either tetrakis(dimethylamido)titanium or bis(ethylcyclopentadienyl)manganese were used as precursors, suggesting that the phenomenon is general for 2D materials. Transmission electron microscopy revealed the presence, prior to deposition, of dislocation networks along the basal plane of mechanically exfoliated 2D flakes, indicating that periodical basal plane defects related to disruptions in the van der Waals stacking of layers, such as perfect line dislocations and triangular extended stacking faults networks, introduce a surface reactivity landscape that leads to the emergence of patterned deposition

    Controlling Swarms of Robots Using Interpolated Implicit Functions

    Get PDF
    We address the synthesis of controllers for large groups of robots and sensors, tackling the specific problem of controlling a swarm of robots to generate patterns specified by implicit functions of the form s(x, y) = 0. We derive decentralized controllers that allow the robots to converge to a given curve S and spread along this curve. We consider implicit functions that are weighted sums of radial basis functions created by interpolating from a set of constraint points, which give us a high degree of control over the desired 2D curves. We describe the generation of simple plans for swarms of robots using these functions and illustrate

    Secondary ion mass spectrometry of vapor−liquid−solid grown, Au-catalyzed, Si wires

    Get PDF
    Knowledge of the catalyst concentration within vapor-liquid-solid (VLS) grown semiconductor wires is needed in order to assess potential limits to electrical and optical device performance imposed by the VLS growth mechanism. We report herein the use of secondary ion mass spectrometry to characterize the Au catalyst concentration within individual, VLS-grown, Si wires. For Si wires grown by chemical vapor deposition from SiCl_4 at 1000 °C, an upper limit on the bulk Au concentration was observed to be 1.7 x 10^16 atoms/cm^3, similar to the thermodynamic equilibrium concentration at the growth temperature. However, a higher concentration of Au was observed on the sidewalls of the wires

    10 ”m minority-carrier diffusion lengths in Si wires synthesized by Cu-catalyzed vapor-liquid-solid growth

    Get PDF
    The effective electron minority-carrier diffusion length, L_(n,eff), for 2.0 ”m diameter Si wires that were synthesized by Cu-catalyzed vapor-liquid-solid growth was measured by scanning photocurrent microscopy. In dark, ambient conditions, L_(n,eff) was limited by surface recombination to a value of ≀ 0.7 ”m. However, a value of L_(n,eff) = 10.5±1 ”m was measured under broad-area illumination in low-level injection. The relatively long minority-carrier diffusion length observed under illumination is consistent with an increased surface passivation resulting from filling of the surface states of the Si wires by photogenerated carriers. These relatively large L_(n,eff) values have important implications for the design of high-efficiency, radial-junction photovoltaic cells from arrays of Si wires synthesized by metal-catalyzed growth processes
    • 

    corecore