27 research outputs found

    Retroviral superinfection resistance

    Get PDF
    The retroviral phenomenon of superinfection resistance (SIR) defines an interference mechanism that is established after primary infection, preventing the infected cell from being superinfected by a similar type of virus. This review describes our present understanding of the underlying mechanisms of SIR established by three characteristic retroviruses: Murine Leukaemia Virus (MuLV), Foamy Virus (FV), and Human Immunodeficiency Virus (HIV). In addition, SIR is discussed with respect to HIV superinfection of humans. MuLV resistant mice exhibit two genetic resistance traits related to SIR. The cellular Fv4 gene expresses an Env related protein that establishes resistance against MuLV infection. Another mouse gene (Fv1) mediates MuLV resistance by expression of a sequence that is distantly related to Gag and that blocks the viral infection after the reverse transcription step. FVs induce two distinct mechanisms of superinfection resistance. First, expression of the Env protein results in SIR, probably by occupancy of the cellular receptors for FV entry. Second, an increase in the concentration of the viral Bet (Between-env-and-LTR-1-and-2) protein reduces proviral FV gene expression by inhibition of the transcriptional activator protein Tas (Transactivator of spumaviruses). In contrast to SIR in FV and MuLV infection, the underlying mechanism of SIR in HIV-infected cells is poorly understood. CD4 receptor down-modulation, a major characteristic of HIV-infected cells, has been proposed to be the main mechanism of SIR against HIV, but data have been contradictory. Several recent studies report the occurrence of HIV superinfection in humans; an event associated with the generation of recombinant HIV strains and possibly with increased disease progression. The role of SIR in protecting patients from HIV superinfection has not been studied so far. The phenomenon of SIR may also be important in the protection of primates that are vaccinated with live attenuated simian immunodeficiency virus (SIV) against pathogenic SIV variants. As primate models of SIV infection closely resemble HIV infection, a better knowledge of SIR-induced mechanisms could contribute to the development of an HIV vaccine or other antiviral strategies

    Altered Intracellular Localization and Mobility of SBDS Protein upon Mutation in Shwachman-Diamond Syndrome

    Get PDF
    Shwachman-Diamond Syndrome (SDS) is a rare inherited disease caused by mutations in the SBDS gene. Hematopoietic defects, exocrine pancreas dysfunction and short stature are the most prominent clinical features. To gain understanding of the molecular properties of the ubiquitously expressed SBDS protein, we examined its intracellular localization and mobility by live cell imaging techniques. We observed that SBDS full-length protein was localized in both the nucleus and cytoplasm, whereas patient-related truncated SBDS protein isoforms localize predominantly to the nucleus. Also the nucleo-cytoplasmic trafficking of these patient-related SBDS proteins was disturbed. Further studies with a series of SBDS mutant proteins revealed that three distinct motifs determine the intracellular mobility of SBDS protein. A sumoylation motif in the C-terminal domain, that is lacking in patient SBDS proteins, was found to play a pivotal role in intracellular motility. Our structure-function analyses provide new insight into localization and motility of the SBDS protein, and show that patient-related mutant proteins are altered in their molecular properties, which may contribute to the clinical features observed in SDS patients

    Canonical Wnt: a safeguard and threat for erythropoiesis

    Full text link
    Abstract Myeloid dysplastic syndrome (MDS) reflects a preleukemic bone marrow (BM) disorder with limited treatment options and poor disease survival. As only a minority of MDS patients are eligible for curative hematopoietic stem cell transplantation, there is an urgent need to develop alternative treatment options. Chronic activation of Wnt/β-catenin has been implicated to underlie MDS formation and recently assigned to drive MDS transformation to acute myeloid leukemia. Wnt/β-catenin signaling therefore may harbor a pharmaceutical target to treat MDS and/or prevent leukemia formation. However, targeting the Wnt/β-catenin pathway will also affect healthy hematopoiesis in MDS patients. The control of Wnt/β-catenin in healthy hematopoiesis is poorly understood. Whereas Wnt/β-catenin is dispensable for steady-state erythropoiesis, its activity is essential for stress erythropoiesis in response to BM injury and anemia. Manipulation of Wnt/β-catenin signaling in MDS may therefore deregulate stress erythropoiesis and even increase anemia severity. Here, we provide a comprehensive overview of the most recent and established insights in the field to acquire more insight into the control of Wnt/β-catenin signaling in healthy and inefficient erythropoiesis as seen in MDS.</jats:p

    A model for phospho-caveolin-1 driven turnover of focal adhesions

    No full text
    The regulation of Focal Adhesion (FA) dynamics is a key aspect of cellular motility. FAs concentrate integrins and associated cytoskeletal elements as well as a large number of regulatory proteins, including adapters, kinases and small GTPases of the Rho Family. We have recently shown that activated Rac1 can localize to FAs and can initiate the accumulation of the adapter protein Caveolin1 (Cav1) at FAs. As reported by several groups including ours, this translocation requires Cav1 phosphorylation at Tyr14, presumably by Src. Here we provide additional data regarding this process and briefly review recent literature. Finally, we incorporated the different pieces of available information into a mechanistic model. This model proposes that local Rac1 activation initiates a series of events that involve endosomal traffic of Cav1 and Src, targeting these proteins to or near FAs. Next, within specific membrane domains, Src can mediate the phosphorylation of Cav1 at Tyr 14, which is important for the stable FA localization of Cav1. Finally, dephosphorylation of Cav1 may represent a key step required for internalization, FA turnover and cell motility

    The role of ubiquitylation and degradation in RhoGTPase signalling

    No full text
    Rho-like guanosine triphosphatases (RhoGTPases) control many aspects of cellular physiology through their effects on the actin cytoskeleton and on gene transcription. Signalling by RhoGTPases is tightly coordinated and requires a series of regulatory proteins, including guanine-nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs) and guanine-nucleotide dissociation inhibitors (GDIs). GEFs and GAPs regulate GTPase cycling between the active (GTP-bound) and inactive (GDP-bound) states, whereas GDI is a cytosolic chaperone that binds inactive RhoGTPases. Like many other proteins, RhoGTPases are subject to degradation following the covalent conjugation of ubiquitin. There have been increasing indications that ubiquitylation of small GTPases occurs in a regulated fashion, primarily upon activation, and is an important means to control signalling output. Recent work has identified cellular proteins that control RasGTPase and RhoGTPase ubiquitylation and degradation, allowing us to amend the canonical model for GTPase (in)activation. Moreover, accumulating evidence for indirect regulation of GTPase function through the ubiquitylation of GTPase regulators makes this post-translational modification a key feature of GTPase-dependent signalling pathways. Here, we will discuss these recent insights into the regulation of RhoGTPase ubiquitylation and their relevance for cell signalling

    Ubiquitin links to cytoskeletal dynamics, cell adhesion and migration

    No full text
    Post-translational modifications are used by cells to link additional information to proteins. Most modifications are subtle and concern small moieties such as a phosphate group or a lipid. In contrast, protein ubiquitylation entails the covalent attachment of a full-length protein such as ubiquitin. The protein ubiquitylation machinery is remarkably complex, comprising more than 15 Ubls (ubiquitin-like proteins) and several hundreds of ubiquitin-conjugating enzymes. Ubiquitin is best known for its role as a tag that induces protein destruction either by the proteasome or through targeting to lysosomes. However, addition of one or more Ubls also affects vesicular traffic, protein-protein interactions and signal transduction. It is by now well established that ubiquitylation is a component of most, if not all, cellular signalling pathways. Owing to its abundance in controlling cellular functions, ubiquitylation is also of key relevance to human pathologies, including cancer and inflammation. In the present review, we focus on its role in the control of cell adhesion, polarity and directionalmigration. It will become clear that protein modification byUbls occurs at every level from the receptors at the plasma membrane down to cytoskeletal components such as actin, with differential consequences for the pathway's final output. Since ubiquitylation is fast as well as reversible, it represents a bona fide signalling event, which is used to fine-tune a cell's responses to receptor agonists

    Supplementary Table 1 from Truncated ASPP2 Drives Initiation and Progression of Invasive Lobular Carcinoma via Distinct Mechanisms

    No full text
    &lt;p&gt;List of primers used for cloning and genotyping&lt;/p&gt;</jats:p

    Truncated ASPP2 Drives Initiation and Progression of Invasive Lobular Carcinoma via Distinct Mechanisms

    Full text link
    Abstract Invasive lobular carcinoma (ILC) accounts for 8%–14% of all breast cancer cases. The main hallmark of ILCs is the functional loss of the cell–cell adhesion protein E-cadherin. Nonetheless, loss of E-cadherin alone does not predispose mice to mammary tumor development, indicating that additional perturbations are required for ILC formation. Previously, we identified an N-terminal truncation variant of ASPP2 (t-ASPP2) as a driver of ILC in mice with mammary-specific loss of E-cadherin. Here we showed that expression of t-ASPP2 induced actomyosin relaxation, enabling adhesion and survival of E-cadherin–deficient murine mammary epithelial cells on stiff matrices like fibrillar collagen. The induction of actomyosin relaxation by t-ASPP2 was dependent on its interaction with protein phosphatase 1, but not on t-ASPP2–induced YAP activation. Truncated ASPP2 collaborated with both E-cadherin loss and PI3K pathway activation via PTEN loss in ILC development. t-ASPP2–induced actomyosin relaxation was required for ILC initiation, but not progression. Conversely, YAP activation induced by t-ASPP2 contributed to tumor growth and progression while being dispensable for tumor initiation. Together, these findings highlight two distinct mechanisms through which t-ASPP2 promotes ILC initiation and progression. Significance: Truncated ASPP2 cooperates with E-cadherin and PTEN loss to drive breast cancer initiation and progression via two distinct mechanisms. ASPP2-induced actomyosin relaxation drives tumor initiation, while ASPP2-mediated YAP activation enhances tumor progression. </jats:sec

    E-Cadherin Expression Distinguishes Mouse from Human Hematopoiesis in the Basophil and Erythroid Lineages

    No full text
    E-cadherin is a key regulator of epithelial cell&ndash;cell adhesion, the loss of which accelerates tumor growth and invasion. E-cadherin is also expressed in hematopoietic cells as well as epithelia. The function of hematopoietic E-cadherin is, however, mostly elusive. In this study, we explored the validity of mouse models to functionally investigate the role of hematopoietic E-cadherin in human hematopoiesis. We generated a hematopoietic-specific E-cadherin knockout mouse model. In mice, hematopoietic E-cadherin is predominantly expressed within the basophil lineage, the expression of which is dispensable for the generation of basophils. However, neither E-cadherin mRNA nor protein were detected in human basophils. In contrast, human hematopoietic E-cadherin marks the erythroid lineage. E-cadherin expression in hematopoiesis thereby revealed striking evolutionary differences between the basophil and erythroid cell lineage in humans and mice. This is remarkable as E-cadherin expression in epithelia is highly conserved among vertebrates including humans and mice. Our study therefore revealed that the mouse does not represent a suitable model to study the function of E-cadherin in human hematopoiesis and an alternative means to study the role of E-cadherin in human erythropoiesis needs to be developed
    corecore