3 research outputs found

    Silencing of the XAF1 gene by promoter hypermethylation in cancer cells and reactivation to TRAIL-sensitization by IFN-β

    Get PDF
    BACKGROUND: XIAP-associated factor 1 (XAF1) is a putative tumor suppressor that exerts its proapoptotic effects through both caspase-dependent and – independent means. Loss of XAF1 expression through promoter methylation has been implicated in the process of tumorigenesis in a variety of cancers. In this report, we investigated the role of basal xaf1 promoter methylation in xaf1 expression and assessed the responsiveness of cancer cell lines to XAF1 induction by IFN-β. METHODS: We used the conventional bisulfite DNA modification and sequencing method to determine the methylation status in the CpG sites of xaf1 promoter in glioblastoma (SF539, SF295), neuroblastoma (SK-N-AS) and cervical carcinoma (HeLa) cells. We analysed the status and incidence of basal xaf1 promoter methylation in xaf1 expression in non-treated cells as well as under a short or long exposure to IFN-β. Stable XAF1 glioblastoma knock-down cell lines were established to characterize the direct implication of XAF1 in IFN-β-mediated sensitization to TRAIL-induced cell death. RESULTS: We found a strong variability in xaf1 promoter methylation profile and responsiveness to IFN-β across the four cancer cell lines studied. At the basal level, aberrant promoter methylation was linked to xaf1 gene silencing. After a short exposure, the IFN-β-mediated reactivation of xaf1 gene expression was related to the degree of basal promoter methylation. However, in spite of continued promoter hypermethylation, we find that IFN-β induced a transient xaf1 expression, that in turn, was followed by promoter demethylation upon a prolonged exposure. Importantly, we demonstrated for the first time that IFN-β-mediated reactivation of endogenous XAF1 plays a critical role in TRAIL-induced cell death since XAF1 knock-down cell lines completely lost their IFN-β-mediated TRAIL sensitivity. CONCLUSION: Together, these results suggest that promoter demethylation is not the sole factor determining xaf1 gene induction under IFN-β treatment. Furthermore, our study provides evidence that XAF1 is a crucial interferon-stimulated gene (ISG) mediator of IFN-induced sensitization to TRAIL in cancer

    A Nonself Recognition Gene Complex in Neurospora crassa

    Full text link
    Nonself recognition is exemplified in the fungal kingdom by the regulation of cell fusion events between genetically different individuals (heterokaryosis). The het-6 locus is one of ∼10 loci that control heterokaryon incompatibility during vegetative growth of N. crassa. Previously, it was found that het-6-associated incompatibility in Oak Ridge (OR) strains involves two contiguous genes, het-6 and un-24. The OR allele of either gene causes “strong” incompatibility (cell death) when transformed into Panama (PA)-background strains. Several remarkable features of the locus include the nature of these incompatibility genes (het-6 is a member of a repetitive gene family and un-24 also encodes the large subunit of ribonucleotide reductase) and the observation that un-24 and het-6 are in severe linkage disequilibrium. Here, we identify “weak” (slow, aberrant growth) incompatibility activities by un-24(PA) and het-6(PA) when transformed separately into OR strains, whereas together they exhibit an additive, strong effect. We synthesized strains with the new allelic combinations un-24(PA) het-6(OR) and un-24(OR) het-6(PA), which are not found in nature. These strains grow normally and have distinct nonself recognition capabilities but may have reduced fitness. Comparing the Oak Ridge and Panama het-6 regions revealed a paracentric inversion, the architecture of which provides insights into the evolution of the un-24–het-6 gene complex

    On the independence of barrage formation and heterokaryon incompatibility in Neurospora crassa

    Full text link
    A barrage is a line or zone of demarcation that may develop at the interface where genetically different fungi meet. Barrage formation represents a type of nonself recognition that has often been attributed to the heterokaryon incompatibility system, which limits the co-occurrence of genetically different nuclei in the same cytoplasm during the asexual phase of the life cycle. While the genetic basis of the heterokaryon incompatibility system is well characterized in Neurospora crassa, barrage formation has not been thoroughly investigated. In addition to the previously described Standard Mating Reaction barrage, we identified at least three types of barrage in N. crassa; dark line, clear zone, and raised aggregate of hyphae. Barrage formation in N. crassa was evident only when paired mycelia were genetically different and only when confrontations were carried out on low nutrient growth media. Barrages were observed to occur in some cases between strains that were identical at all major heterokaryon incompatibility (het) loci and the mating-type locus, mat, which acts as a heterokaryon incompatibility locus during the vegetative phase of N. crassa. We also found examples where barrages did not form between strains that had genetic differences at het-6, het-c, and/or mat. Taken together, these results suggest that the genetic control of barrage formation in N. crassa can operate independently from that of heterokaryon incompatibility and mating type. Surprisingly, barrages were not observed to form when wild-collected strains of N. crassa were paired. However, an increase in the frequency of pairings that produced barrages was observed among strains obtained by back-crossing wild strains to laboratory strains, or through successive rounds of inbreeding of wild-derived strains, suggesting the presence in wild strains of genes that suppress barrage
    corecore