4 research outputs found

    Intrinsic Electronic Structure and Nodeless Superconducting Gap of YBa2Cu3O7−δ\mathrm{YBa_{2} Cu_{3} O_{7-\delta} } Observed by Spatially-Resolved Laser-Based Angle Resolved Photoemission Spectroscopy

    Full text link
    The spatially-resolved laser-based high resolution ARPES measurements have been performed on the optimally-doped YBa2Cu3O7−δ\mathrm{YBa_{2} Cu_{3} O_{7-\delta} } (Y123) superconductor. For the first time, we found the region from the cleaved surface that reveals clear bulk electronic properties. The intrinsic Fermi surface and band structures of Y123 are observed. The Fermi surface-dependent and momentum-dependent superconducting gap is determined which is nodeless and consistent with the d+is gap form

    Orbital-Dependent Electron Correlation in Double-Layer Nickelate La3Ni2O7

    Full text link
    The latest discovery of high temperature superconductivity near 80K in La3Ni2O7 under high pressure has attracted much attention. Many proposals are put forth to understand the origin of superconductivity. The determination of electronic structures is a prerequisite to establish theories to understand superconductivity in nickelates but is still lacking. Here we report our direct measurement of the electronic structures of La3Ni2O7 by high-resolution angle-resolved photoemmission spectroscopy. The Fermi surface and band structures of La3Ni2O7 are observed and compared with the band structure calculations. A flat band is formed from the Ni-3dz2 orbitals around the zone corner which is 50meV below the Fermi level. Strong electron correlations are revealed which are orbital- and momentum-dependent. Our observations will provide key information to understand the origin of high temperature superconductivity in La3Ni2O7.Comment: 18 pages, 4 figure
    corecore