6 research outputs found

    T2182C Mutation in 23S rRNA Is Associated with Clarithromycin Resistance in Helicobacter pylori Isolates Obtained in Bangladesh

    No full text
    Twelve clarithromycin-resistant (MIC, ≥1 μg/ml) Helicobacter pylori isolates were analyzed for point mutations in the 23S rRNA gene. Sequence analysis of all of the resistant isolates revealed a T-to-C transition mutation at position 2182. Transformation experiments confirmed that a single T-to-C transition mutation at position 2182 is associated with clarithromycin resistance

    Isolation of tetracycline-resistant clinical Helicobacter pylori without mutations in 16S rRNA gene in Bangladesh

    No full text
    The occurrence of 16S rRNA gene mutations associated with resistance to tetracycline in H. pylori isolated in Bangladesh was investigated. Tetracycline susceptibility was determined by the agar dilution method. The 16S rRNA genes of these isolates were sequenced and analyzed. A tetracycline accumulation assay was performed. DNA sequence and transformation tests of nine tetracycline-resistant (MIC = 2 µg/ml) Bangladeshi H. pylori clinical isolates showed that in no case was the resistance due to mutations in the 16S rRNA gene, the only known cause of tetracycline resistance in this pathogen. Tetracycline accumulation assays implicated altered uptake or efflux

    Antimicrobial Susceptibility of Helicobacter pylori Strains Isolated in Bangladesh

    Get PDF
    Antimicrobial susceptibility of 120 Helicobacter pylori isolates to metronidazole, tetracycline, clarithromycin, and amoxicillin was determined, and 77.5, 15, 10, and 6.6% of the isolates, respectively, were resistant. Only rdxA inactivation and both rdxA and frxA inactivation were responsible for metronidazole resistance in 66% (8 of 12) and 33% (4 of 12) of the isolates, respectively
    corecore