6 research outputs found

    Numerical Simulation of Non-Equilibrium Two-Phase Wet Steam Flow through an Asymmetric Nozzle

    No full text
    The present study reported of the numerical investigation of a high-speed wet steam flow through an asymmetric nozzle. The spontaneous non-equilibrium homogeneous condensation of wet steam was numerically modeled based on the classical nucleation theory and droplet growth rate equation combined with the field conservations within the computational fluid dynamics (CFD) code of ANSYS Fluent 13.0. The equations describing droplet formations and interphase change were solved sequentially after solving the main flow conservation equations. The calculations were carried out assuming the flow two-dimensional, compressible, turbulent, and viscous. The SST k-ω model was used for modeling the turbulence within an unstructured mesh solver. The validation of numerical model was accomplished, and the results showed a good agreement between the numerical simulation and experimental data. The effect of spontaneous non-equilibrium condensation on the jet and shock structures was revealed, and the condensation shown a great influence on the jet structure

    pH-Sensitive Hydrogel from Polyethylene Oxide and Acrylic acid by Gamma Radiation

    No full text
    Hydrogel as a good water absorbent has attracted great research interest. A series of hydrogel based on polyethylene oxide (PEO) and acrylic acid (AAc) was prepared by applying gamma radiation with variation in the concentration of acrylic acid. Fourier transform infrared (FTIR) and scanning electron microscopy (SEM) were used to characterize the PEO/ AAc hydrogel. The properties of the prepared hydrogels such as gel content, swelling behavior, tensile strength, and pH sensitivity were evaluated. The formation of the hydrogels was confirmed from FTIR spectra. SEM images showed the inner porous structure of the hydrogels. The dose of gamma radiation was optimized to get a hydrogel with good swelling property and mechanical strength. The swelling ratio and gel content of the hydrogels were increased with increasing acrylic acid content. The pH of the solutions affected the swelling which indicated the pH-responsive property of the prepared hydrogels. Swelling of the prepared hydrogels in sodium chloride salt solutions decreased with increasing the ionic strength
    corecore