1,444 research outputs found
Improper hydration induces global gene expression changes associated with renal development in infant mice
Abstract Background The kidney is a major organ in which fluid balance and waste excretion is regulated. For the kidney to achieve maturity with functions, normal renal developmental processes need to occur. Comprehensive genetic programs underlying renal development during the prenatal period have been widely studied. However, postnatal renal development, from infancy to the juvenile period, has not been studied yet. Here, we investigated whether structural and functional kidney development was still ongoing in early life by analyzing the renal transcriptional networks of infant (4 weeks old) and juvenile (7 weeks old) mice. We further examined the effects of dehydration on kidney development to unravel the mechanistic bases underlying deteriorative impact of pediatric dehydration on renal development. Methods 3-week-old infant mice that just finished weaning period were provided limited access to a water for fifteen minutes per day for one week (RES 1W) and four weeks (RES 4W) to induce dehydration while control group consumed water ad libitum with free access to the water bottle. Transcriptome analysis was conducted to understand physiological changes during postnatal renal development and dehydration. Results Kidneys in 4-week- and 7-week-old mice showed significantly distinctive functional gene networks. Gene sets related to cell cycle regulators, fetal kidney patterning molecules, and immature basement membrane integrity were upregulated in infantile kidneys while heightened expressions of genes associated with ion transport and drug metabolism were observed in juvenile kidneys. Dehydration during infancy suppressed renal growth by interrupting the SHH signaling pathway, which targets cell cycle regulators. Importantly, it is likely that disruption of the developmental program ultimately led to a decline in gene expression associated with basement membrane integrity. Conclusions Altogether, we demonstrate transcriptional events during renal development in infancy and show that the impacts of inadequate water intake in the early postnatal state heavily rely on the impairment of normal renal development. Here, we provide a meaningful perspective of renal development in infancy with a molecular and physiological explanation of why infants are more vulnerable to dehydration than adults. These results provide new insights into the molecular effects of dehydration on renal physiology and indicate that optimal nutritional interventions are necessary for pediatric renal development
A Case Study of the 3D Design Process Applied for Customized Art Wears
This study was aimed to examine the efficiency of using 3D virtual design tools for customization process and creative design process by creating art wears with 3D design tools for individuals. The 3D Design for Art Wear Project has been conducted by collaborating in creating a wearable form from a digital print in art. For the project, art wears were designed with OptiTex 3D virtual design tool and 3D body scanner to create a seamless art wear from a genuine digital print art Superficial Outgrowth created by the artist. A customized wearable art with 3D design has been developed in this project. It is a remarkable that once a person has been scanned with a 3D body scanner, stored in the 3D system and designed in 3D, mapping the art without unnecessary cutting and no physical fitting process
Shear-solvo defect annihilation of diblock copolymer thin films over a large area
Achieving defect-free block copolymer (BCP) nanopatterns with a long-ranged orientation over a large area remains a persistent challenge, impeding the successful and widespread application of BCP self-assembly. Here, we demonstrate a new experimental strategy for defect annihilation while conserving structural order and enhancing uniformity of nanopatterns. Sequential shear alignment and solvent vapor annealing generate perfectly aligned nanopatterns with a low defect density over centimeter-scale areas, outperforming previous single or sequential combinations of annealing. The enhanced order quality and pattern uniformity were characterized in unprecedented detail via scattering analysis and incorporating new mathematical indices using elaborate image processing algorithms. In addition, using an advanced sampling method combined with a coarse-grained molecular simulation, we found that domain swelling is the driving force for enhanced defect annihilation. The superior quality of large-scale nanopatterns was further confirmed with diffraction and optical properties after metallized patterns, suggesting strong potential for application in optoelectrical devices
Inactivated vaccine with glycyrrhizic acid adjuvant elicits potent innate and adaptive immune responses against foot-and-mouth disease
BackgroundFoot-and-mouth disease (FMD) is an extremely contagious viral disease that is fatal to young animals and is a major threat to the agricultural economy by reducing production and limiting the movement of livestock. The currently commercially-available FMD vaccine is prepared using an inactivated viral antigen in an oil emulsion, with aluminum hydroxide [Al(OH)3] as an adjuvant. However, oil emulsion-based options possess limitations including slow increases in antibody titers (up to levels adequate for defense against viral infection) and risks of local reactions at the vaccination site. Further, Al(OH)3 only induces a T helper 2 (Th2) cell response. Therefore, novel adjuvants that can address these limitations are urgently needed. Glycyrrhizic acid (extracted from licorice roots) is a triterpenoid saponin and has great advantages in terms of price and availability.MethodsTo address the limitations of the currently used commercial FMD vaccine, we added glycyrrhizic acid as an adjuvant (immunostimulant) to the FMD bivalent (O PA2 + A YC) vaccine. We then evaluated its efficacy in promoting both innate and adaptive (cellular and humoral) immune reactions in vitro [using murine peritoneal exudate cells (PECs) and porcine peripheral blood mononuclear cells (PBMCs)] and in vivo (using mice and pigs).ResultsGlycyrrhizic acid has been revealed to induce an innate immune response and enhance early, mid-, and long-term immunity. The studied bivalent vaccine with glycyrrhizic acid increased the expression of immunoregulatory genes such as pattern-recognition receptors (PRRs), cytokines, transcription factors, and co-stimulatory molecules.ConclusionCollectively, glycyrrhizic acid could have utility as a novel vaccine adjuvant that can address the limitations of commercialized FMD vaccines by inducing potent innate and adaptive immune responses
Development of a Specific and Rapid Diagnostic Method for Detecting Influenza A (H1N1) pdm09 Virus Infection Using Immunochromatographic Assay
AbstractObjectivesThe aim of this study was to develop an immunochromatographic assay (ICA) for the detection of influenza A (H1N1) pdm09 virus infection.Materials and methodsSeveral monoclonal antibodies against influenza A (H1N1) pdm09 virus were generated and an ICA (pdm09-ICA) was developed for the rapid and specific detection of influenza A (H1N1) pdm09 virus infection. The specificity and sensitivity of the developed assay were compared with that of hemagglutination assay and real-time reverse-transcription polymerase chain reaction (rRT-PCR).ResultsThe detection limit was estimated to be 1/2 (8) hemagglutinating unit; the sensitivity and specificity rates of pdm09-ICA were 75.86% (110/145) and 100% (43/43), respectively, compared with rRT-PCR. The cross-reactivity for 20 influenza viruses, including seasonal H1N1 viruses, was found to be negative except for the H1N1 virus (A/Swine/Korea/GC0503/2005).ConclusionThese results indicate that the proposed method can be easily used for rapid and specific detection of the pdm09 infection. The assay developed in this study would be a useful tool for distinguishing the pdm09 infection from seasonal influenza A and B infections
Reactive oxygen species and p47phox activation are essential for the Mycobacterium tuberculosis-induced pro-inflammatory response in murine microglia
<p>Abstract</p> <p>Background</p> <p>Activated microglia elicits a robust amount of pro-inflammatory cytokines, which are implicated in the pathogenesis of tuberculosis in the central nervous system (CNS). However, little is known about the intracellular signaling mechanisms governing these inflammatory responses in microglia in response to <it>Mycobacterium tuberculosis </it>(Mtb).</p> <p>Methods</p> <p>Murine microglial BV-2 cells and primary mixed glial cells were stimulated with sonicated Mtb (s-Mtb). Intracellular ROS levels were measured by staining with oxidative fluorescent dyes [2',7'-Dichlorodihydrofluorescein diacetate (H<sub>2</sub>DCFDA) and dihydroethidium (DHE)]. NADPH oxidase activities were measured by lucigenin chemiluminescence assay. S-Mtb-induced MAPK activation and pro-inflammatory cytokine release in microglial cells were measured using by Western blot analysis and enzyme-linked immunosorbent assay, respectively.</p> <p>Results</p> <p>We demonstrate that s-Mtb promotes the up-regulation of reactive oxygen species (ROS) and the rapid activation of mitogen-activated protein kinases (MAPKs), including p38 and extracellular signal-regulated kinase (ERK) 1/2, as well as the secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-12p40 in murine microglial BV-2 cells and primary mixed glial cells. Both NADPH oxidase and mitochondrial electron transfer chain subunit I play an indispensable role in s-Mtb-induced MAPK activation and pro-inflammatory cytokine production in BV-2 cells and mixed glial cells. Furthermore, the activation of cytosolic NADPH oxidase p47phox and MAPKs (p38 and ERK1/2) is mutually dependent on s-Mtb-induced inflammatory signaling in murine microglia. Neither TLR2 nor dectin-1 was involved in s-Mtb-induced inflammatory responses in murine microglia.</p> <p>Conclusion</p> <p>These data collectively demonstrate that s-Mtb actively induces the pro-inflammatory response in microglia through NADPH oxidase-dependent ROS generation, although the specific pattern-recognition receptors involved in these responses remain to be identified.</p
Pregnancy-related knowledge, risk perception, and reproductive decision making of women with epilepsy in Korea
AbstractPurposeTo determine the influence of pregnancy-related knowledge and the risk perception on reproductive decision making in women with epilepsy.MethodsWe enrolled women with epilepsy, who were of reproductive age and were considering having children in the future. A questionnaire was used to assess the level of pregnancy-related knowledge, perception of the offspring's risk for developing epilepsy or for having a congenial anomaly, and discussion with a physician concerning pregnancy-related issues. We evaluated the following outcome variables: (1) the decision to discontinue anti-epileptic drug (AED) during a future pregnancy regardless of the medical indication; and (2) the decision to have fewer children because of epilepsy.ResultsWe enrolled a total of 186 women with epilepsy. (1) Fifty-eight percent of the women were considering discontinuing AED during a future pregnancy regardless of the medical indication, and 25% of the women decided to have fewer children because of epilepsy. (2) The decision to discontinue AED during a future pregnancy was associated with low-level pregnancy-related knowledge. (3) The decision to have fewer children because of epilepsy was associated with an exaggerated perception of the offspring's risk for developing epilepsy. (4) The women who had ever discussed pregnancy-related issues with their physician were less likely to decide to discontinue AED during a future pregnancy; however, a discussion on this issue had no impact on their decision to have fewer children because of epilepsy.ConclusionMore than 50% of the women would decide to discontinue AED during a future pregnancy, and 25% of the women stated that they would have fewer children because of epilepsy. These data highlight the importance of education on pregnancy-related issues and genetic risk counseling
- …