3 research outputs found

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Transformation and Characterization of Δ12-Fatty Acid Acetylenase and Δ12-Oleate Desaturase Potentially Involved in the Polyacetylene Biosynthetic Pathway from Bidens pilosa

    No full text
    Bidens pilosa is commonly used as an herbal tea component or traditional medicine for treating several diseases, including diabetes. Polyacetylenes have two or more carbon–carbon triple bonds or alkynyl functional groups and are mainly derived from fatty acid and polyketide precursors. Here, we report the cloning of full-length cDNAs that encode Δ12-fatty acid acetylenase (designated BPFAA) and Δ12-oleate desaturase (designated BPOD) from B. pilosa, which we predicted to play a role in the polyacetylene biosynthetic pathway. Subsequently, expression vectors carrying BPFAA or BPOD were constructed and transformed into B. pilosa via the Agrobacterium-mediated method. Genomic PCR analysis confirmed the presence of transgenes and selection marker genes in the obtained transgenic lines. The copy numbers of transgenes in transgenic lines were determined by Southern blot analysis. Furthermore, 4–5 FAA genes and 2–3 OD genes were detected in wild-type (WT) plants. Quantitative real time-PCR revealed that some transgenic lines had higher expression levels than WT. Western blot analysis revealed OD protein expression in the selected transformants. High-performance liquid chromatography profiling was used to analyze the seven index polyacetylenic compounds, and fluctuation patterns were found
    corecore