7,890 research outputs found

    Comparing the Heterogeneity of Copper-Binding Characteristics for Two Different-Sized Soil Humic Acid Fractions Using Fluorescence Quenching Combined with 2D-COS

    Get PDF
    Heterogeneous distributions of copper-binding characteristics were compared for two ultrafiltered size fractions of a soil HA using fluorescence quenching combined with two-dimensional correlation spectroscopy (2D-COS). The apparent shapes of the original synchronous fluorescence spectra and the extent of the fluorescence quenching upon the addition of copper were similar for the two fractions. The stability constants calculated at their highest peaks were not significantly different. However, the 2D-COS results revealed that the fluorescence quenching behaviors were strongly affected by the associated wavelengths and the fraction's size. The spectral change preferentially occurred in the wavelength order of 467 nm → 451 nm → 357 nm for the 1–10 K fraction and of 376 nm → 464 nm for the >100 K fraction. The extent of the binding affinities exactly followed the sequential orders interpreted from the 2D-COS, and they exhibited the distinctive ranges of the logarithmic values from 5.86 to 4.91 and from 6.48 to 5.95 for the 1–10 K and the >100 K fractions, respectively. Our studies demonstrated that fluorescence quenching combined with 2D-COS could be successfully utilized to give insight into the chemical heterogeneity associated with metal-binding sites within the relatively homogeneous HA size fractions

    Growth of superconducting MgB2 thin films via postannealing techniques

    Full text link
    We report the effect of annealing on the superconductivity of MgB2 thin films as functions of the postannealing temperature in the range from 700 C to 950 C and of the postannealing time in the range from 30 min to 120 min. On annealing at 900 C for 30 min, we obtained the best-quality MgB2 films with a transition temperature of 39 K and a critical current density of ~ 10^7 A/cm^2. Using the scanning electron microscopy, we also investigated the film growth mechanism. The samples annealed at higher temperatures showed the larger grain sizes, well-aligned crystal structures with preferential orientations along the c-axis, and smooth surface morphologies. However, a longer annealing time prevented the alignment of grains and reduced the superconductivity, indicating a strong interfacial reaction between the substrate and the MgB2 film.Comment: 7 pages, 4 figures include
    corecore