5,570 research outputs found

    Size effect of Ruderman-Kittel-Kasuya-Yosida interaction mediated by electrons in nanoribbons

    Full text link
    We calculated the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between the magnetic impurities mediated by electrons in nanoribbons. It was shown that the RKKY interaction is strongly dependent on the width of the nanoribbon and the transverse positions of the impurities. The transverse confinement of electrons is responsible for the above size effect of the RKKY interaction. It provides a potential way to control the RKKY interaction by changing nanostructure geometry

    A novel culture system for modulating single cell geometry in 3D

    Get PDF
    Dedifferentiation of chondrocytes during in vitro expansion remains an unsolved challenge for repairing serious articular cartilage defects. In this study, a novel culture system was developed to modulate single cell geometry in 3D and investigate its effects on the chondrocyte phenotype. The approach uses 2D micropatterns followed by in situ hydrogel formation to constrain single cell shape and spreading. This enables independent control of cell geometry and extracellular matrix. Using collagen I matrix, we demonstrated the formation of a biomimetic collagenous “basket” enveloping individual chondrocytes cells. By quantitatively monitoring the production by single cells of chondrogenic matrix (e.g. collagen II and aggrecan) during 21-day cultures, we found that if the cell’s volume decreases, then so does its cell resistance to dedifferentiation (even if the cells remain spherical). Conversely, if the volume of spherical cells remains constant (after an initial decrease), then not only do the cells retain their differentiated status, but previously de-differentiated redifferentiate and regain a chondrocyte phenotype. The approach described here can be readily applied to pluripotent cells, offering a versatile platform in the search for niches toward either self-renewal or targeted differentiation

    Spin Dependence of Interfacial Reflection Phase Shift at Cu/Co Interface

    Full text link
    The spin dependent reflection at the interface is the key element to understand the spin transport. By completely solving the scattering problem based on first principles method, we obtained the spin resolved reflectivity spectra. The comparison of our theoretical results with experiment is good in a large energy scale from Fermi level to energy above vacuum level. It is found that interfacial distortion is crucial for understanding the spin dependence of the phase gain at the Cu∣|Co interface. Near the Fermi level, image state plays an important role to the phase accumulation in the copper film.Comment: 6 papges, 3 figures, accepted by Physical Review

    The current research status of normal tension glaucoma

    Get PDF
    Normal tension glaucoma (NTG) is a progressive optic neuropathy that mimics primary open-angle glaucoma, but lacks the findings of elevated intraocular pressure or other mitigating factors that can lead to optic neuropathy. The present review summarized the causes, genetics, and mechanisms underlying NTG in both animal models and human patients. We also proposed that the neurovascular unit is a therapeutic target for NTG management.published_or_final_versio

    Transition metal oxides for high performance sodium ion battery anodes

    Get PDF
    Sodium-ion batteries (SIBs) are attracting considerable attention with expectation of replacing lithium-ion batteries (LIBs) in large-scale energy storage systems (ESSs). To explore high performance anode materials for SIBs is highly desired subject to the current anode research mainly limited to carbonaceous materials. In this study, a series of transition metal oxides (TMOs) is successfully demonstrated as anodes for SIBs for the first time. The sodium uptake/extract is confirmed in the way of reversible conversion reaction. The pseudocapacitance-type behavior is also observed in the contribution of sodium capacity. For Fe2O3anode, a reversible capacity of 386 mAh g-1at 100 mA g-1 is achieved over 200 cycles; as high as 233 mAhg-1is sustained even cycling at a large current-density of 5 A g-1
    • 

    corecore