100 research outputs found

    Electric-field-driven Non-volatile Multi-state Switching of Individual Skyrmions in a Multiferroic Heterostructure

    Full text link
    Electrical manipulation of skyrmions attracts considerable attention for its rich physics and promising applications. To date, such a manipulation is realized mainly via spin-polarized current based on spin-transfer torque or spin-orbital torque effect. However, this scheme is energy-consuming and may produce massive Joule heating. To reduce energy dissipation and risk of heightened temperatures of skyrmion-based devices, an effective solution is to use electric field instead of current as stimulus. Here, we realize an electric-field manipulation of skyrmions in a nanostructured ferromagnetic/ferroelectrical heterostructure at room temperature via an inverse magneto-mechanical effect. Intriguingly, such a manipulation is non-volatile and exhibits a multi-state feature. Numerical simulations indicate that the electric-field manipulation of skyrmions originates from strain-mediated modification of effective magnetic anisotropy and Dzyaloshinskii-Moriya interaction. Our results open a direction for constructing low-energy-dissipation, non-volatile, and multi-state skyrmion-based spintronic devices.Comment: Accepted by Nature Communications 11, 3577 (2020

    Proton pump inhibitors may enhance the risk of digestive diseases by regulating intestinal microbiota

    Get PDF
    Proton pump inhibitors (PPIs) are the most used acid-inhibitory drugs, with a wide range of applications in the treatment of various digestive diseases. However, recently, there has been a growing number of digestive complications linked to PPIs, and several studies have indicated that the intestinal flora play an important role in these complications. Therefore, developing a greater understanding of the role of the gut microbiota in PPI-related digestive diseases is essential. Here, we summarize the current research on the correlation between PPI-related digestive disorders and intestinal flora and establish the altered strains and possible pathogenic mechanisms of the different diseases. We aimed to provide a theoretical basis and reference for the future treatment and prevention of PPI-related digestive complications based on the regulation of the intestinal microbiota
    • …
    corecore