12 research outputs found

    Design of trials in lacunar stroke and cerebral small vessel disease: review and experience with the LACunar Intervention Trial 2 (LACI-2)

    Get PDF
    Cerebral small vessel disease (cSVD) causes lacunar stroke (25% of ischaemic strokes), haemorrhage, dementia, physical frailty, or is 'covert', but has no specific treatment. Uncertainties about the design of clinical trials in cSVD, which patients to include or outcomes to assess, may have delayed progress. Based on experience in recent cSVD trials, we reviewed ways to facilitate future trials in patients with cSVD. We assessed the literature and the LACunar Intervention Trial 2 (LACI-2) for data to inform choice of Participant, Intervention, Comparator, Outcome, including clinical versus intermediary endpoints, potential interventions, effect of outcome on missing data, methods to aid retention and reduce data loss. We modelled risk of missing outcomes by baseline prognostic variables in LACI-2 using binary logistic regression. Imaging versus clinical outcomes led to larger proportions of missing data. We present reasons for and against broad versus narrow entry criteria. We identified numerous repurposable drugs with relevant modes of action to test in various cSVD subtypes. Cognitive impairment is the most common clinical outcome after lacunar ischaemic stroke but was missing more frequently than dependency, quality of life or vascular events in LACI-2. Assessing cognitive status using Diagnostic and Statistical Manual for Mental Disorders Fifth Edition can use cognitive data from multiple sources and may help reduce data losses. Trials in patients with all cSVD subtypes are urgently needed and should use broad entry criteria and clinical outcomes and focus on ways to maximise collection of cognitive outcomes to avoid missing data

    Isosorbide Mononitrate and Cilostazol Treatment in Patients With Symptomatic Cerebral Small Vessel Disease: The Lacunar Intervention Trial-2 (LACI-2) Randomized Clinical Trial

    Get PDF
    IMPORTANCE: Cerebral small vessel disease (cSVD) is a common cause of stroke (lacunar stroke), is the most common cause of vascular cognitive impairment, and impairs mobility and mood but has no specific treatment. OBJECTIVE: To test the feasibility, drug tolerability, safety, and effects of 1-year isosorbide mononitrate (ISMN) and cilostazol treatment on vascular, functional, and cognitive outcomes in patients with lacunar stroke. DESIGN, SETTING, AND PARTICIPANTS: The Lacunar Intervention Trial-2 (LACI-2) was an investigator-initiated, open-label, blinded end-point, randomized clinical trial with a 2 × 2 factorial design. The trial aimed to recruit 400 participants from 26 UK hospital stroke centers between February 5, 2018, and May 31, 2021, with 12-month follow-up. Included participants had clinical lacunar ischemic stroke, were independent, were aged older than 30 years, had compatible brain imaging findings, had capacity to consent, and had no contraindications to (or indications for) the study drugs. Data analysis was performed on August 12, 2022. INTERVENTIONS: All patients received guideline stroke prevention treatment and were randomized to ISMN (40-60 mg/d), cilostazol (200 mg/d), ISMN-cilostazol (40-60 and 200 mg/d, respectively), or no study drug. MAIN OUTCOMES: The primary outcome was recruitment feasibility, including retention at 12 months. Secondary outcomes were safety (death), efficacy (composite of vascular events, dependence, cognition, and death), drug adherence, tolerability, recurrent stroke, dependence, cognitive impairment, quality of life (QOL), and hemorrhage. RESULTS: Of the 400 participants planned for this trial, 363 (90.8%) were recruited. Their median age was 64 (IQR, 56.0-72.0) years; 251 (69.1%) were men. The median time between stroke and randomization was 79 (IQR, 27.0-244.0) days. A total of 358 patients (98.6%) were retained in the study at 12 months, with 257 of 272 (94.5%) taking 50% or more of the allocated drug. Compared with those participants not receiving that particular drug, neither ISMN (adjusted hazard ratio [aHR], 0.80 [95% CI, 0.59 to 1.09]; P = .16) nor cilostazol (aHR, 0.77 [95% CI, 0.57 to 1.05]; P = .10) alone reduced the composite outcome in 297 patients. Isosorbide mononitrate reduced recurrent stroke in 353 patients (adjusted odds ratio [aOR], 0.23 [95% CI, 0.07 to 0.74]; P = .01) and cognitive impairment in 308 patients (aOR, 0.55 [95% CI, 0.36 to 0.86]; P = .008). Cilostazol reduced dependence in 320 patients (aHR, 0.31 [95% CI, 0.14 to 0.72]; P = .006). Combination ISMN-cilostazol reduced the composite (aHR, 0.58 [95% CI, 0.36 to 0.92]; P = .02), dependence (aOR, 0.14 [95% CI, 0.03 to 0.59]; P = .008), and any cognitive impairment (aOR, 0.44 [95% CI, 0.23 to 0.85]; P = .02) and improved QOL (adjusted mean difference, 0.10 [95% CI, 0.03 to 0.17]; P = .005) in 153 patients. There were no safety concerns. CONCLUSIONS AND RELEVANCE: These results show that the LACI-2 trial was feasible and ISMN and cilostazol were well tolerated and safe. These agents may reduce recurrent stroke, dependence, and cognitive impairment after lacunar stroke, and they could prevent other adverse outcomes in cSVD. Therefore, both agents should be tested in large phase 3 trials. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03451591

    Isosorbide Mononitrate and Cilostazol Treatment in Patients With Symptomatic Cerebral Small Vessel Disease: The Lacunar Intervention Trial-2 (LACI-2) Randomized Clinical Trial

    Get PDF
    Importance Cerebral small vessel disease (cSVD) is a common cause of stroke (lacunar stroke), is the most common cause of vascular cognitive impairment, and impairs mobility and mood but has no specific treatment.Objective To test the feasibility, drug tolerability, safety, and effects of 1-year isosorbide mononitrate (ISMN) and cilostazol treatment on vascular, functional, and cognitive outcomes in patients with lacunar stroke.Design, Setting, and Participants The Lacunar Intervention Trial-2 (LACI-2) was an investigator-initiated, open-label, blinded end-point, randomized clinical trial with a 2 × 2 factorial design. The trial aimed to recruit 400 participants from 26 UK hospital stroke centers between February 5, 2018, and May 31, 2021, with 12-month follow-up. Included participants had clinical lacunar ischemic stroke, were independent, were aged older than 30 years, had compatible brain imaging findings, had capacity to consent, and had no contraindications to (or indications for) the study drugs. Data analysis was performed on August 12, 2022.Interventions All patients received guideline stroke prevention treatment and were randomized to ISMN (40-60 mg/d), cilostazol (200 mg/d), ISMN-cilostazol (40-60 and 200 mg/d, respectively), or no study drug.Main Outcomes The primary outcome was recruitment feasibility, including retention at 12 months. Secondary outcomes were safety (death), efficacy (composite of vascular events, dependence, cognition, and death), drug adherence, tolerability, recurrent stroke, dependence, cognitive impairment, quality of life (QOL), and hemorrhage.Results Of the 400 participants planned for this trial, 363 (90.8%) were recruited. Their median age was 64 (IQR, 56.0-72.0) years; 251 (69.1%) were men. The median time between stroke and randomization was 79 (IQR, 27.0-244.0) days. A total of 358 patients (98.6%) were retained in the study at 12 months, with 257 of 272 (94.5%) taking 50% or more of the allocated drug. Compared with those participants not receiving that particular drug, neither ISMN (adjusted hazard ratio [aHR], 0.80 [95% CI, 0.59 to 1.09]; P = .16) nor cilostazol (aHR, 0.77 [95% CI, 0.57 to 1.05]; P = .10) alone reduced the composite outcome in 297 patients. Isosorbide mononitrate reduced recurrent stroke in 353 patients (adjusted odds ratio [aOR], 0.23 [95% CI, 0.07 to 0.74]; P = .01) and cognitive impairment in 308 patients (aOR, 0.55 [95% CI, 0.36 to 0.86]; P = .008). Cilostazol reduced dependence in 320 patients (aHR, 0.31 [95% CI, 0.14 to 0.72]; P = .006). Combination ISMN-cilostazol reduced the composite (aHR, 0.58 [95% CI, 0.36 to 0.92]; P = .02), dependence (aOR, 0.14 [95% CI, 0.03 to 0.59]; P = .008), and any cognitive impairment (aOR, 0.44 [95% CI, 0.23 to 0.85]; P = .02) and improved QOL (adjusted mean difference, 0.10 [95% CI, 0.03 to 0.17]; P = .005) in 153 patients. There were no safety concerns.Conclusions and Relevance These results show that the LACI-2 trial was feasible and ISMN and cilostazol were well tolerated and safe. These agents may reduce recurrent stroke, dependence, and cognitive impairment after lacunar stroke, and they could prevent other adverse outcomes in cSVD. Therefore, both agents should be tested in large phase 3 trials.Trial Registration ClinicalTrials.gov Identifier: NCT0345159

    Enhanced deuteron coalescence probability in jets

    No full text
    The transverse-momentum (pT) spectra and coalescence parameters B2 of (anti)deuterons are measured in pp collisions at s√=13 TeV for the first time in and out of jets. In this measurement, the direction of the leading particle with the highest pT in the event (pleadT>5 GeV/c) is used as an approximation for the jet axis. The event is consequently divided into three azimuthal regions and the jet signal is obtained as the difference between the Toward region, that contains jet fragmentation products in addition to the underlying event (UE), and the Transverse region, which is dominated by the UE. The coalescence parameter in the jet is found to be approximately a factor of 10 larger than that in the underlying event. This experimental observation is consistent with the coalescence picture and can be attributed to the smaller average phase-space distance between nucleons inside the jet cone as compared to the underlying event. The results presented in this Letter are compared to predictions from a simple nucleon coalescence model, where the phase space distributions of nucleons are generated using PYTHIA 8 with the Monash 2013 tuning, and to predictions from a deuteron production model based on ordinary nuclear reactions with parametrized energy-dependent cross sections tuned on data. The latter model is implemented in PYTHIA 8.3. Both models reproduce the observed large difference between in-jet and out-of-jet coalescence parameters, although the almost flat trend of the BJet2 is not reproduced by the models, which instead give a decreasing trend

    Light (anti)nuclei production in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The measurement of the production of deuterons, tritons and 3He and their antiparticles in Pb-Pb collisions at sNN−−−√=5.02 TeV is presented in this article. The measurements are carried out at midrapidity (|y|< 0.5) as a function of collision centrality using the ALICE detector. The pT-integrated yields, the coalescence parameters and the ratios to protons and antiprotons are reported and compared with nucleosynthesis models. The comparison of these results in different collision systems at different centre-of-mass collision energies reveals a suppression of nucleus production in small systems. In the Statistical Hadronisation Model framework, this can be explained by a small correlation volume where the baryon number is conserved, as already shown in previous fluctuation analyses. However, a different size of the correlation volume is required to describe the proton yields in the same data sets. The coalescence model can describe this suppression by the fact that the wave functions of the nuclei are large and the fireball size starts to become comparable and even much smaller than the actual nucleus at low multiplicities

    Measurement of the angle between jet axes in pp collisions at √s = 5.02 TeV

    No full text
    This article reports measurements of the angle between differently defined jet axes in pp collisions at s√=5.02 TeV carried out by the ALICE Collaboration. Charged particles at midrapidity are clustered into jets with resolution parameters R=0.2 and 0.4. The jet axis, before and after Soft Drop grooming, is compared to the jet axis from the Winner-Takes-All (WTA) recombination scheme. The angle between these axes, ΔRaxis, probes a wide phase space of the jet formation and evolution, ranging from the initial high-momentum-transfer scattering to the hadronization process. The ΔRaxis observable is presented for 20<pchjetT<100 GeV/c, and compared to predictions from the PYTHIA 8 and Herwig 7 event generators. The distributions can also be calculated analytically with a leading hadronization correction related to the non-perturbative component of the Collins−Soper−Sterman (CSS) evolution kernel. Comparisons to analytical predictions at next-to-leading-logarithmic accuracy with leading hadronization correction implemented from experimental extractions of the CSS kernel in Drell−Yan measurements are presented. The analytical predictions describe the measured data within 20% in the perturbative regime, with surprising agreement in the non-perturbative regime as well. These results are compatible with the universality of the CSS kernel in the context of jet substructure

    Pseudorapidity densities of charged particles with transverse momentum thresholds in pp collisions at √s = 5.02 and 13 TeV

    No full text
    The pseudorapidity density of charged particles with minimum transverse momentum (pT) thresholds of 0.15, 0.5, 1, and 2 GeV/c is measured in pp collisions at the centre of mass energies of s√= 5.02 and 13 TeV with the ALICE detector. The study is carried out for inelastic collisions with at least one primary charged particle having a pseudorapidity (η) within ±0.8 and pT larger than the corresponding threshold. In addition, measurements without pT-thresholds are performed for inelastic and non-single-diffractive events as well as for inelastic events with at least one charged particle having |η|2 GeV/c), highlighting the importance of such measurements for tuning event generators. The new measurements agree within uncertainties with results from the ATLAS and CMS experiments obtained at s√=13 TeV

    Production of pions, kaons, and protons as a function of the relative transverse activity classifier in pp collisions at √s = 13 TeV

    No full text
    The production of π±, K±, and (p¯¯¯)p is measured in pp collisions at s√=13 TeV in different topological regions. Particle transverse momentum (pT) spectra are measured in the ``toward'', ``transverse'', and ``away'' angular regions defined with respect to the direction of the leading particle in the event. While the toward and away regions contain the fragmentation products of the near-side and away-side jets, respectively, the transverse region is dominated by particles from the Underlying Event (UE). The relative transverse activity classifier, RT=NT/⟨NT⟩, is used to group events according to their UE activity, where NT is the measured charged-particle multiplicity per event in the transverse region and ⟨NT⟩ is the mean value over all the analysed events. The first measurements of identified particle pT spectra as a function of RT in the three topological regions are reported. The yield of high transverse momentum particles relative to the RT-integrated measurement decreases with increasing RT in both the toward and away regions, indicating that the softer UE dominates particle production as RT increases and validating that RT can be used to control the magnitude of the UE. Conversely, the spectral shapes in the transverse region harden significantly with increasing RT. This hardening follows a mass ordering, being more significant for heavier particles. The pT-differential particle ratios (p+p¯¯¯)/(π++π−) and (K++K−)/(π++π−) in the low UE limit (RT→0) approach expectations from Monte Carlo generators such as PYTHIA 8 with Monash 2013 tune and EPOS LHC, where the jet-fragmentation models have been tuned to reproduce e+e− results
    corecore