215 research outputs found
Large deviation asymptotics and control variates for simulating large functions
Consider the normalized partial sums of a real-valued function of a
Markov chain, The
chain takes values in a general state space ,
with transition kernel , and it is assumed that the Lyapunov drift condition
holds: where , , the set is small and dominates . Under these
assumptions, the following conclusions are obtained: 1. It is known that this
drift condition is equivalent to the existence of a unique invariant
distribution satisfying , and the law of large numbers
holds for any function dominated by :
2. The lower error
probability defined by , for , ,
satisfies a large deviation limit theorem when the function satisfies a
monotonicity condition. Under additional minor conditions an exact large
deviations expansion is obtained. 3. If is near-monotone, then
control-variates are constructed based on the Lyapunov function , providing
a pair of estimators that together satisfy nontrivial large asymptotics for the
lower and upper error probabilities. In an application to simulation of queues
it is shown that exact large deviation asymptotics are possible even when the
estimator does not satisfy a central limit theorem.Comment: Published at http://dx.doi.org/10.1214/105051605000000737 in the
Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute
of Mathematical Statistics (http://www.imstat.org
Passive Dynamics in Mean Field Control
Mean-field models are a popular tool in a variety of fields. They provide an
understanding of the impact of interactions among a large number of particles
or people or other "self-interested agents", and are an increasingly popular
tool in distributed control.
This paper considers a particular randomized distributed control architecture
introduced in our own recent work. In numerical results it was found that the
associated mean-field model had attractive properties for purposes of control.
In particular, when viewed as an input-output system, its linearization was
found to be minimum phase.
In this paper we take a closer look at the control model. The results are
summarized as follows:
(i) The Markov Decision Process framework of Todorov is extended to
continuous time models, in which the "control cost" is based on relative
entropy. This is the basis of the construction of a family of controlled
Markovian generators.
(ii) A decentralized control architecture is proposed in which each agent
evolves as a controlled Markov process. A central authority broadcasts a common
control signal to each agent. The central authority chooses this signal based
on an aggregate scalar output of the Markovian agents.
(iii) Provided the control-free system is a reversible Markov process, the
following identity holds for the linearization, where the right hand side
denotes the power spectral density for the output of any one of the individual
(control-free) Markov processes.Comment: To appear IEEE CDC, 201
Feature Extraction for Universal Hypothesis Testing via Rank-constrained Optimization
This paper concerns the construction of tests for universal hypothesis
testing problems, in which the alternate hypothesis is poorly modeled and the
observation space is large. The mismatched universal test is a feature-based
technique for this purpose. In prior work it is shown that its
finite-observation performance can be much better than the (optimal) Hoeffding
test, and good performance depends crucially on the choice of features. The
contributions of this paper include: 1) We obtain bounds on the number of
\epsilon distinguishable distributions in an exponential family. 2) This
motivates a new framework for feature extraction, cast as a rank-constrained
optimization problem. 3) We obtain a gradient-based algorithm to solve the
rank-constrained optimization problem and prove its local convergence.Comment: 5 pages, 4 figures, submitted to ISIT 201
Generalized Error Exponents For Small Sample Universal Hypothesis Testing
The small sample universal hypothesis testing problem is investigated in this
paper, in which the number of samples is smaller than the number of
possible outcomes . The goal of this work is to find an appropriate
criterion to analyze statistical tests in this setting. A suitable model for
analysis is the high-dimensional model in which both and increase to
infinity, and . A new performance criterion based on large deviations
analysis is proposed and it generalizes the classical error exponent applicable
for large sample problems (in which ). This generalized error exponent
criterion provides insights that are not available from asymptotic consistency
or central limit theorem analysis. The following results are established for
the uniform null distribution:
(i) The best achievable probability of error decays as
for some .
(ii) A class of tests based on separable statistics, including the
coincidence-based test, attains the optimal generalized error exponents.
(iii) Pearson's chi-square test has a zero generalized error exponent and
thus its probability of error is asymptotically larger than the optimal test.Comment: 43 pages, 4 figure
Computable exponential bounds for screened estimation and simulation
Suppose the expectation is to be estimated by the empirical
averages of the values of on independent and identically distributed
samples . A sampling rule called the "screened" estimator is
introduced, and its performance is studied. When the mean of a
different function is known, the estimates are "screened," in that we only
consider those which correspond to times when the empirical average of the
is sufficiently close to its known mean. As long as dominates
appropriately, the screened estimates admit exponential error bounds, even
when is heavy-tailed. The main results are several nonasymptotic,
explicit exponential bounds for the screened estimates. A geometric
interpretation, in the spirit of Sanov's theorem, is given for the fact that
the screened estimates always admit exponential error bounds, even if the
standard estimates do not. And when they do, the screened estimates' error
probability has a significantly better exponent. This implies that screening
can be interpreted as a variance reduction technique. Our main mathematical
tools come from large deviations techniques. The results are illustrated by a
detailed simulation example.Comment: Published in at http://dx.doi.org/10.1214/00-AAP492 the Annals of
Applied Probability (http://www.imstat.org/aap/) by the Institute of
Mathematical Statistics (http://www.imstat.org
- …