215 research outputs found

    Large deviation asymptotics and control variates for simulating large functions

    Full text link
    Consider the normalized partial sums of a real-valued function FF of a Markov chain, ϕn:=n1k=0n1F(Φ(k)),n1.\phi_n:=n^{-1}\sum_{k=0}^{n-1}F(\Phi(k)),\qquad n\ge1. The chain {Φ(k):k0}\{\Phi(k):k\ge0\} takes values in a general state space X\mathsf {X}, with transition kernel PP, and it is assumed that the Lyapunov drift condition holds: PVVW+bICPV\le V-W+b\mathbb{I}_C where V:X(0,)V:\mathsf {X}\to(0,\infty), W:X[1,)W:\mathsf {X}\to[1,\infty), the set CC is small and WW dominates FF. Under these assumptions, the following conclusions are obtained: 1. It is known that this drift condition is equivalent to the existence of a unique invariant distribution π\pi satisfying π(W)<\pi(W)<\infty, and the law of large numbers holds for any function FF dominated by WW: ϕnϕ:=π(F),a.s.,n.\phi_n\to\phi:=\pi(F),\qquad{a.s.}, n\to\infty. 2. The lower error probability defined by P{ϕnc}\mathsf {P}\{\phi_n\le c\}, for c<ϕc<\phi, n1n\ge1, satisfies a large deviation limit theorem when the function FF satisfies a monotonicity condition. Under additional minor conditions an exact large deviations expansion is obtained. 3. If WW is near-monotone, then control-variates are constructed based on the Lyapunov function VV, providing a pair of estimators that together satisfy nontrivial large asymptotics for the lower and upper error probabilities. In an application to simulation of queues it is shown that exact large deviation asymptotics are possible even when the estimator does not satisfy a central limit theorem.Comment: Published at http://dx.doi.org/10.1214/105051605000000737 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Passive Dynamics in Mean Field Control

    Full text link
    Mean-field models are a popular tool in a variety of fields. They provide an understanding of the impact of interactions among a large number of particles or people or other "self-interested agents", and are an increasingly popular tool in distributed control. This paper considers a particular randomized distributed control architecture introduced in our own recent work. In numerical results it was found that the associated mean-field model had attractive properties for purposes of control. In particular, when viewed as an input-output system, its linearization was found to be minimum phase. In this paper we take a closer look at the control model. The results are summarized as follows: (i) The Markov Decision Process framework of Todorov is extended to continuous time models, in which the "control cost" is based on relative entropy. This is the basis of the construction of a family of controlled Markovian generators. (ii) A decentralized control architecture is proposed in which each agent evolves as a controlled Markov process. A central authority broadcasts a common control signal to each agent. The central authority chooses this signal based on an aggregate scalar output of the Markovian agents. (iii) Provided the control-free system is a reversible Markov process, the following identity holds for the linearization, Real(G(jω))=PSDY(ω)0,ω, \text{Real} (G(j\omega)) = \text{PSD}_Y(\omega)\ge 0, \quad \omega\in\Re, where the right hand side denotes the power spectral density for the output of any one of the individual (control-free) Markov processes.Comment: To appear IEEE CDC, 201

    Feature Extraction for Universal Hypothesis Testing via Rank-constrained Optimization

    Full text link
    This paper concerns the construction of tests for universal hypothesis testing problems, in which the alternate hypothesis is poorly modeled and the observation space is large. The mismatched universal test is a feature-based technique for this purpose. In prior work it is shown that its finite-observation performance can be much better than the (optimal) Hoeffding test, and good performance depends crucially on the choice of features. The contributions of this paper include: 1) We obtain bounds on the number of \epsilon distinguishable distributions in an exponential family. 2) This motivates a new framework for feature extraction, cast as a rank-constrained optimization problem. 3) We obtain a gradient-based algorithm to solve the rank-constrained optimization problem and prove its local convergence.Comment: 5 pages, 4 figures, submitted to ISIT 201

    Generalized Error Exponents For Small Sample Universal Hypothesis Testing

    Full text link
    The small sample universal hypothesis testing problem is investigated in this paper, in which the number of samples nn is smaller than the number of possible outcomes mm. The goal of this work is to find an appropriate criterion to analyze statistical tests in this setting. A suitable model for analysis is the high-dimensional model in which both nn and mm increase to infinity, and n=o(m)n=o(m). A new performance criterion based on large deviations analysis is proposed and it generalizes the classical error exponent applicable for large sample problems (in which m=O(n)m=O(n)). This generalized error exponent criterion provides insights that are not available from asymptotic consistency or central limit theorem analysis. The following results are established for the uniform null distribution: (i) The best achievable probability of error PeP_e decays as Pe=exp{(n2/m)J(1+o(1))}P_e=\exp\{-(n^2/m) J (1+o(1))\} for some J>0J>0. (ii) A class of tests based on separable statistics, including the coincidence-based test, attains the optimal generalized error exponents. (iii) Pearson's chi-square test has a zero generalized error exponent and thus its probability of error is asymptotically larger than the optimal test.Comment: 43 pages, 4 figure

    Computable exponential bounds for screened estimation and simulation

    Full text link
    Suppose the expectation E(F(X))E(F(X)) is to be estimated by the empirical averages of the values of FF on independent and identically distributed samples {Xi}\{X_i\}. A sampling rule called the "screened" estimator is introduced, and its performance is studied. When the mean E(U(X))E(U(X)) of a different function UU is known, the estimates are "screened," in that we only consider those which correspond to times when the empirical average of the {U(Xi)}\{U(X_i)\} is sufficiently close to its known mean. As long as UU dominates FF appropriately, the screened estimates admit exponential error bounds, even when F(X)F(X) is heavy-tailed. The main results are several nonasymptotic, explicit exponential bounds for the screened estimates. A geometric interpretation, in the spirit of Sanov's theorem, is given for the fact that the screened estimates always admit exponential error bounds, even if the standard estimates do not. And when they do, the screened estimates' error probability has a significantly better exponent. This implies that screening can be interpreted as a variance reduction technique. Our main mathematical tools come from large deviations techniques. The results are illustrated by a detailed simulation example.Comment: Published in at http://dx.doi.org/10.1214/00-AAP492 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore