2,354 research outputs found

    The effect of 2 mMol glutamine supplementation on HSP70 and TNF-ι release by LPS stimulated blood from healthy children.

    Get PDF
    OBJECTIVE: Glutamine has been shown to promote heat shock protein 70 (HSP70) release both within experimental in vitro models of sepsis (2-10 mM) and in adults post trauma (0.5 g/kg), although the efficacy varies and is dependent on the model used. The effect of glutamine supplementation on HSP70 release in children is less clear. Therefore, the aim of this study was to investigate the effect of 2 mM glutamine added to incubation media on HSP70 and inflammatory mediator release in an in vitro model of paediatric sepsis using whole blood from healthy paediatric volunteers. METHODS: An in vitro whole blood endotoxin stimulation model using 1 Îźg/ml lipopolysaccharide (LPS) over a 24 h time period was used to investigate the effects of 2 mM glutamine on HSP70 and inflammatory mediator release in healthy children. RESULTS: The addition of 2 mM glutamine to the incubation media significantly increased HSP70 release over time (p < 0.05). This was associated with an early pro-inflammatory effect on TNF-Îą release at 4 h (p < 0.005) which was not seen at 24 h. There was a non significant trend towards higher levels of IL-6 and IL-10 following the addition of 2 mM glutamine, which appears to differ from the response reported in adult and animal models. CONCLUSION: Glutamine supplementation of incubation media promotes HSP70 and early TNF- Îą release in an in vitro model using blood samples from healthy children.This is the author accepted manuscript. The final version is available via Elsevier at http://dx.doi.org/10.1016/j.clnu.2014.12.00

    A new survival model for hyperthermic intraperitoneal chemotherapy (HIPEC) in tumor-bearing rats in the treatment of peritoneal carcinomatosis

    Get PDF
    BACKGROUND: Cytoreduction followed by hyperthermic intraperitoneal chemotherapy (HIPEC) improves survival in patients with peritoneal carcinomatosis of colorectal origin. Animal models are important in the evaluation of new treatment modalities. The purpose of this study was to devise an experimental setting which can be routinely used for the investigation of HIPEC in peritoneal carcinomatosis. METHODS: A new peritoneal perfusion system in tumor bearing rats were tested. For this purpose CC531 colon carcinoma cells were implanted intraperitoneally in Wag/Rija rats. After 10 days of tumor growth the animals were randomized into three groups of six animals each: group 1: control (n = 6), group 2: HIPEC with mitomycin C in a concentration of 15 mg/m(2 )(n = 6), group III: mitomycin C i.p. as monotherapy in a concentration of 10 mg/m(2 )(n = 6). After 10 days, total tumor weight and the extent of tumor spread, as classified by the modified Peritoneal Cancer Index (PCI), were assessed by autopsy of the animals. RESULTS: No postoperative deaths were observed. Conjunctivitis, lethargy and loss of appetite were the main side effects in the HIPEC group. No severe locoregional or systemic toxity was observed. All control animals developed massive tumor growth. Tumor load was significantly reduced in the treatment group and was lowest in group II. CONCLUSION: The combination of hyperthermia with MMC resulted in an increased tumoricidal effect in the rat model. The presented model provides an opportunity to study the mechanism and effect of hyperthermic intraperitoneal chemotherapy and new drugs for this treatment modality

    Histological response of peritoneal carcinomatosis after hyperthermic intraperitoneal chemoperfusion (HIPEC) in experimental investigations

    Get PDF
    BACKGROUND: In selected patients with peritoneal carcinomatosis from colorectal cancer prognosis can be improved by hyperthermic intraperitoneal chemotherapy (HIPEC) after cytoreductive surgery. The aim of this study was to evaluate the tumor response of peritoneal carcinomatosis in tumor-bearing rats treated with HIPEC. METHODS: CC531 colon carcinoma (2,5 × 10(6 )cells), implanted intraperitoneally in Wag/Rija rats, was treated by hyperthermic intraperitoneal chemotherapy. After 10 days of tumor growth the animals were randomized into five groups of six animals each: group I: control (n = 6), group II: sham operated animals (n = 6), group III: hyperthermic intraperitoneal perfusion (HIP) without cytostatic drugs, group IV: HIPEC with mitomycin C in a concentration of 15 mg/m(2 )(n = 6), group V: mitomycin C i.p. alone in a concentration of 10 mg/m(2 )(n = 6). After 10 days the extent of tumor spread and histological outcome were analysed by autopsy. RESULTS: All control animals developed extensive intraperitoneal tumor growth. Histological tumor load was significantly reduced in group III and group V and was lowest in group IV. In group II tumor load was significantly higher than in group I. Implanted metastases were significantly decreased in group IV compared with group I and group II. CONCLUSION: These findings indicate that HIPEC is an effective treatment for peritoneal carcinomatosis in this animal model. HIPEC reduced macroscopic and microscopic intraperitoneal tumor spread

    Antiepileptic drugs’ tolerability and safety – a systematic review and meta-analysis of adverse effects in dogs

    Get PDF
    <p>Various anti-epileptic drugs (AEDs) are used for the management of idiopathic epilepsy (IE) in dogs. Their safety profile is an important consideration for regulatory bodies, owners and prescribing clinicians. However, information on their adverse effects still remains limited with most of it derived from non-blinded non-randomized uncontrolled trials and case reports.</p><p><span>This poster won third place, which was presented at the Veterinary Evidence Today conference, Edinburgh November 1-3, 2016. </span></p><br /> <img src="https://www.veterinaryevidence.org/rcvskmod/icons/oa-icon.jpg" alt="Open Access" /

    Somatic diseases in patients with schizophrenia in general practice: their prevalence and health care

    Get PDF
    BACKGROUND: Schizophrenia patients frequently develop somatic co-morbidity. Core tasks for GPs are the prevention and diagnosis of somatic diseases and the provision of care for patients with chronic diseases. Schizophrenia patients experience difficulties in recognizing and coping with their physical problems; however GPs have neither specific management policies nor guidelines for the diagnosis and treatment of somatic co-morbidity in schizophrenia patients. This paper systematically reviews the prevalence and treatment of somatic co-morbidity in schizophrenia patients in general practice. METHODS: The MEDLINE, EMBASE, PsycINFO data-bases and the Cochrane Library were searched and original research articles on somatic diseases of schizophrenia patients and their treatment in the primary care setting were selected. RESULTS: The results of this search show that the incidence of a wide range of diseases, such as diabetes mellitus, the metabolic syndrome, coronary heart diseases, and COPD is significantly higher in schizophrenia patients than in the normal population. The health of schizophrenic patients is less than optimal in several areas, partly due to their inadequate help-seeking behaviour. Current GP management of such patients appears not to take this fact into account. However, when schizophrenic patients seek the GP's help, they value the care provided. CONCLUSION: Schizophrenia patients are at risk of undetected somatic co-morbidity. They present physical complaints at a late, more serious stage. GPs should take this into account by adopting proactive behaviour. The development of a set of guidelines with a clear description of the GP's responsibilities would facilitate the desired changes in the management of somatic diseases in these patients

    Infinitesimally Robust Estimation in General Smoothly Parametrized Models

    Full text link
    We describe the shrinking neighborhood approach of Robust Statistics, which applies to general smoothly parametrized models, especially, exponential families. Equal generality is achieved by object oriented implementation of the optimally robust estimators. We evaluate the estimates on real datasets from literature by means of our R packages ROptEst and RobLox

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore