28,806 research outputs found
Detecting Photon-Photon Interactions in a Superconducting Circuit
A local interaction between photons can be engineered by coupling a nonlinear
system to a transmission line. The required high impedance transmission line
can be conveniently formed from a chain of Josephson junctions. The
nonlinearity is generated by side-coupling this chain to a Cooper pair box. We
propose to probe the resulting photon-photon interactions via their effect on
the current-voltage characteristic of a voltage-biased Josephson junction
connected to the transmission line. Considering the Cooper pair box to be in
the weakly anharmonic regime, we find that the dc current through the probe
junction yields features around the voltages , where
is the plasma frequency of the superconducting circuit. The features
at are a direct signature of the photon-photon interaction in the
system.Comment: 10 pages, 7 figure
Transport in coupled graphene-nanotube quantum devices
We report on the fabrication and characterization of all-carbon hybrid
quantum devices based on graphene and single-walled carbon nanotubes. We
discuss both, carbon nanotube quantum dot devices with graphene charge
detectors and nanotube quantum dots with graphene leads. The devices are
fabricated by chemical vapor deposition growth of carbon nanotubes and
subsequent structuring of mechanically exfoliated graphene. We study the
detection of individual charging events in the carbon nanotube quantum dot by a
nearby graphene nanoribbon and show that they lead to changes of up to 20% of
the conductance maxima in the graphene nanoribbon acting as a good performing
charge detector. Moreover, we discuss an electrically coupled graphene-nanotube
junction, which exhibits a tunneling barrier with tunneling rates in the low
GHz regime. This allows to observe Coulomb blockade on a carbon nanotube
quantum dot with graphene source and drain leads
Projective quantum spaces
Associated to the standard R-matrices, we introduce quantum
spheres , projective quantum spaces , and quantum
Grassmann manifolds . These algebras are shown to be
homogeneous quantum spaces of standard quantum groups and are also quantum
principle bundles in the sense of T Brzezinski and S. Majid (Comm. Math. Phys.
157,591 (1993)).Comment: 8 page
Characterizing the performance of Flash memory storage devices and its impact on algorithm design
Initially used in digital audio players, digital cameras, mobile phones, and USB memory sticks, flash memory may become the dominant form of end-user storage in mobile computing, either completely replacing the magnetic hard disks or being an additional secondary storage. We study the design of algorithms and data structures that can exploit the flash memory devices better. For this, we characterize the performance of NAND flash based storage devices, including many solid state disks. We show that these devices have better random read performance than hard disks, but much worse random write performance. We also analyze the effect of misalignments, aging and past I/O patterns etc. on the performance obtained on these devices. We show that despite the similarities between flash memory and RAM (fast random reads) and between flash disk and hard disk (both are block based devices), the algorithms designed in the RAM model or the external memory model do not realize the full potential of the flash memory devices. We later give some broad guidelines for designing algorithms which can exploit the comparative advantages of both a flash memory device and a hard disk, when used together
Recommended from our members
Shock recovery experiments confirm the possibility of transferring viable microorganisms from Mars to Earth
Extract from introduction: With regard to the impact and ejection phase we tested the case for the transfer of microorganisms from Mars to Earth. Using a high explosive set-up thin layers of bacterial endospores of Bacillus subtilis, of the lichen Xanthoria elegans and of the cyanobacterium Chroococcidiopsis sp. embedded between two plates of gabbro were subjected to 10, 20, 30, 40 and 50 GPa which is the pressure range observed in Martian meteorites [1]
Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts
A comprehensive characterization of the lipidome from limited starting material remains very challenging. Here we report a high-sensitivity lipidomics workflow based on nanoflow liquid chromatography and trapped ion mobility spectrometry (TIMS). Taking advantage of parallel accumulation-serial fragmentation (PASEF), we fragment on average 15 precursors in each of 100 ms TIMS scans, while maintaining the full mobility resolution of co-eluting isomers. The acquisition speed of over 100 Hz allows us to obtain MS/MS spectra of the vast majority of isotope patterns. Analyzing 1 mu L of human plasma, PASEF increases the number of identified lipids more than three times over standard TIMS-MS/MS, achieving attomole sensitivity. Building on high intra- and inter-laboratory precision and accuracy of TIMS collisional cross sections (CCS), we compile 1856 lipid CCS values from plasma, liver and cancer cells. Our study establishes PASEF in lipid analysis and paves the way for sensitive, ion mobility-enhanced lipidomics in four dimensions
Recommended from our members
Life after shock: the mission from Mars to Earth
Extract from introduction: The minerals of the Martian meteorites collected so far indicate an exposure to shock waves in the pressure range of 5 to 55 GPa [1]. As terrestrial rocks are frequently inhabited by microbial communities, rocks ejected from a planet by impact processes may carry with them endolithic microorganisms, if microbial life existed/exists on this planet
Expression of PIK3CA mutant E545K in the mammary gland induces heterogeneous tumors but is less potent than mutant H1047R.
The phosphoinositide 3-kinase (PI3K) signaling cascade is a key mediator of cellular growth, survival and metabolism and is frequently subverted in human cancer. The gene encoding for the alpha catalytic subunit of PI3K (PIK3CA) is mutated and/or amplified in ∼30% of breast cancers. Mutations in either the kinase domain (H1047R) or the helical domain (E545K) are most common and result in a constitutively active enzyme with oncogenic capacity. PIK3CA(H1047R) was previously demonstrated to induce tumors in transgenic mouse models; however, it was not known whether overexpression of PIK3CA(E545K) is sufficient to induce mammary tumors and whether tumor initiation by these two types of mutants differs. Here, we demonstrate that expression of PIK3CA(E545K) in the mouse mammary gland induces heterogenous mammary carcinomas but with a longer latency than PIK3CA(H1047R)-expressing mice. Our results suggest that the helical domain mutant PIK3CA(E545K) is a less potent inducer of mammary tumors due to less efficient activation of downstream Akt signaling
- …