397 research outputs found
Protocols, methods, and tools for genome-wide association studies (GWAS) of dental traits
Oral health and disease are known to be influenced by complex interactions between environmental (e.g., social and behavioral) factors and innate susceptibility. Although the exact contribution of genomics and other layers of “omics” to oral health is an area of active research, it is well established that the susceptibility to dental caries, periodontal disease, and other oral and craniofacial traits is substantially influenced by the human genome. A comprehensive understanding of these genomic factors is necessary for the realization of precision medicine in the oral health domain. To aid in this direction, the advent and increasing affordability of high-throughput genotyping has enabled the simultaneous interrogation of millions of genetic polymorphisms for association with oral and craniofacial traits. Specifically, genome-wide association studies (GWAS) of dental caries and periodontal disease have provided initial insights into novel loci and biological processes plausibly implicated in these two common, complex, biofilm-mediated diseases. This paper presents a summary of protocols, methods, tools, and pipelines for the conduct of GWAS of dental caries, periodontal disease, and related traits. The protocol begins with the consideration of different traits for both diseases and outlines procedures for genotyping, quality control, adjustment for population stratification, heritability and association analyses, annotation, reporting, and interpretation. Methods and tools available for GWAS are being constantly updated and improved; with this in mind, the presented approaches have been successfully applied in numerous GWAS and meta-analyses among tens of thousands of individuals, including dental traits such as dental caries and periodontal disease. As such, they can serve as a guide or template for future genomic investigations of these and other traits
Origin and evolution of the light nuclides
After a short historical (and highly subjective) introduction to the field, I
discuss our current understanding of the origin and evolution of the light
nuclides D, He-3, He-4, Li-6, Li-7, Be-9, B-10 and B-11. Despite considerable
observational and theoretical progress, important uncertainties still persist
for each and every one of those nuclides. The present-day abundance of D in the
local interstellar medium is currently uncertain, making it difficult to infer
the recent chemical evolution of the solar neighborhood. To account for the
observed quasi-constancy of He-3 abundance from the Big Bang to our days, the
stellar production of that nuclide must be negligible; however, the scarce
observations of its abundance in planetary nebulae seem to contradict this
idea. The observed Be and B evolution as primaries suggests that the source
composition of cosmic rays has remained quasi-constant since the early days of
the Galaxy, a suggestion with far reaching implications for the origin of
cosmic rays; however, the main idea proposed to account for that constancy,
namely that superbubbles are at the source of cosmic rays, encounters some
serious difficulties. The best explanation for the mismatch between primordial
Li and the observed "Spite-plateau" in halo stars appears to be depletion of Li
in stellar envelopes, by some yet poorly understood mechanism. But this
explanation impacts on the level of the recently discovered early ``Li-6
plateau'', which (if confirmed), seriously challenges current ideas of cosmic
ray nucleosynthesis.Comment: 18 pages, 9 figs. Invited Review in "Symposium on the Composition of
Matter", honoring Johannes Geiss on the occasion of his 80th birthday
(Grindelwald, Switzerland, Sept. 2006), to be published in Space Science
Series of ISS
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Forest Biodiversity Assessment in Peruvian Andean Montane Cloud Forest
Cloud forests are unusual and fragile habitats, being one of the least studied and least understood ecosystems. The tropical Andean dominion is considered one of the most significant places in the world as rega rds biological diversity, with a very high level of endemism. The biodiversity was analysed in an isolated remnant area of a tropical montane cloud forest known as the ?Bosque de Neblina de Cuyas?, in the North of the Peruvian Andean range. Composition, structure and dead wood were measured or estimated. The values obtained were compared with other cloud forests. The study revealed a high level of forest biodiversity, although the level of biodiversity differs from one area to another: in the inner areas, where human pressure is almost inexistent, the biodiversity values increase. The high species richness and the low dominance among species bear testimony to this montane cloud forest as a real enclave of biodiversity
The parental care behaviour of Paratilapia polleni (Perciformes, Labroidei), a phylogenetically primitive cichlid from Madagascar, with a discussion of the evolution of maternal care in the family Cichlidae
The parental behaviour of the Madagascan cichlid, Paratilapia polleni , was studied in the laboratory. According to current hypotheses of phylogenetic intrarelationship for the family Cichlidae, Paratilapia is a representative of a phylogenetically primitive cichlid lineage, and as such is of particular interest in comparative evolutionary studies. Given the basal phylogenetic placement of Paratilapia it seems reasonable to expect that, if maternal participation in brood care arose within the extant Cichlidae, then the proposed plesiomorphic system of extensive male care of eggs and embryos may be retained in this taxon. This is not the case, and already by the fertilized-egg interval male and female roles in Paratilapia are strongly differentiated with the female as the primary care giver. In addition to specialized behavioural roles, a unique egg morphology and mobile egg mass is described for Paratilapia . The results of the study are discussed in the context of theories of the evolution of maternal brood care within the Cichlidae.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42636/1/10641_2004_Article_BF00004768.pd
Novel genetic loci associated with hippocampal volume
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
- …