6,391 research outputs found
The role of aerodynamic resistance in thermal remote sensing-based evapotranspiration models
Aerodynamic resistance (hereafter ra) is a preeminent variable in evapotranspiration (ET) modelling. The accurate quantification of ra plays a pivotal role in determining the performance and consistency of thermal remote sensing-based surface energy balance (SEB) models for estimating ET at local to regional scales. Atmospheric stability links ra with land surface temperature (LST) and the representation of their interactions in the SEB models determines the accuracy of ET estimates. The present study investigates the influence of ra and its relation to LST uncertainties on the performance of three structurally different SEB models. It used data from nine Australian OzFlux eddy covariance sites of contrasting aridity in conjunction with MODIS Terra and Aqua LST and leaf area index (LAI) products. Simulations of the sensible heat flux (H) and the latent heat flux (LE, the energy equivalent of ET in W/m2) from the SPARSE (Soil Plant Atmosphere and Remote Sensing Evapotranspiration), SEBS (Surface Energy Balance System) and STIC (Surface Temperature Initiated Closure) models forced with MODIS LST, LAI, and in-situ meteorological datasets were evaluated against flux observations in water-limited (arid and semi-arid) and energy-limited (mesic) ecosystems from 2011 to 2019. Our results revealed an overestimation tendency of instantaneous LE by all three models in the water-limited shrubland, woodland and grassland ecosystems by up to 50% on average, which was caused by an underestimation of H. Overestimation of LE was associated with discrepancies in ra retrievals under conditions of high atmospheric instability, during which uncertainties in LST (expressed as the difference between MODIS LST and in-situ LST) apparently played a minor role. On the other hand, a positive difference in LST coincided with low ra (high wind speeds) and caused a slight underestimation of LE at the water-limited sites. The impact of ra on the LE residual error was found to be of the same magnitude as the influence of LST uncertainties in the semi-arid ecosystems as indicated by variable importance in projection (VIP) coefficients from partial least squares regression above unity. In contrast, our results for the mesic forest ecosystems indicated minor dependency on ra for modelling LE (VIP \u3c 0.4), which was due to a higher roughness length and lower LST resulting in the dominance of mechanically generated turbulence, thereby diminishing the importance of buoyancy production for the determination of ra
Future landscapes: managing within complexity
A regional landscape is a complex social–ecological system comprising a dynamic mosaic of land uses. Management at this scale requires an understanding of the myriad interacting human and natural processes operating on the landscape over a continuum of spatial and temporal scales.Complexity science, which is not part of traditional management approaches, provides a valuable conceptual framework and quantitative tools for dealing with cross-scale interactions and non-linear dynamics in social–ecological systems. Here, we identify concepts and actions arising from complexity science that can be learned and applied by ecosystem managers and discuss how they might be implemented to achieve sustainable future landscapes.Lael Parrott and Wayne S Meye
Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate in Thermal-Based Evaporation Modeling
Global evaporation monitoring from Earth observation thermal infrared satellite missions is historically challenged due to the unavailability of any direct measurements of aerodynamic temperature. State-of-the-art one-source evaporation models use remotely sensed radiometric surface temperature as a substitute for the aerodynamic temperature and apply empirical corrections to accommodate for their inequality. This introduces substantial uncertainty in operational drought mapping over complex landscapes. By employing a non-parametric model, we show that evaporation can be directly retrieved from thermal satellite data without the need of any empirical correction. Independent evaluation of evaporation in a broad spectrum of biome and aridity yielded statistically significant results when compared with eddy covariance observations. While our simplified model provides a new perspective to advance spatio-temporal evaporation mapping from any thermal remote sensing mission, the direct retrieval of aerodynamic temperature also generates the highly required insight on the critical role of biophysical interactions in global evaporation research
Insights into the aerodynamic versus radiometric surface temperature debate in thermal-based evaporation modeling
Global evaporation monitoring from Earth observation thermal infrared satellite missions is historically challenged due to the unavailability of any direct measurements of aerodynamic temperature. State-of-the-art one-source evaporation models use remotely sensed radiometric surface temperature as a substitute for the aerodynamic temperature and apply empirical corrections to accommodate for their inequality. This introduces substantial uncertainty in operational drought mapping over complex landscapes. By employing a non-parametric model, we show that evaporation can be directly retrieved from thermal satellite data without the need of any empirical correction. Independent evaluation of evaporation in a broad spectrum of biome and aridity yielded statistically significant results when compared with eddy covariance observations. While our simplified model provides a new perspective to advance spatio-temporal evaporation mapping from any thermal remote sensing mission, the direct retrieval of aerodynamic temperature also generates the highly required insight on the critical role of biophysical interactions in global evaporation research
Feedhorn-coupled TES polarimeter camera modules at 150 GHz for CMB polarization measurements with SPTpol
The SPTpol camera is a dichroic polarimetric receiver at 90 and 150 GHz.
Deployed in January 2012 on the South Pole Telescope (SPT), SPTpol is looking
for faint polarization signals in the Cosmic Microwave Background (CMB). The
camera consists of 180 individual Transition Edge Sensor (TES) polarimeters at
90 GHz and seven 84-polarimeter camera modules (a total of 588 polarimeters) at
150 GHz. We present the design, dark characterization, and in-lab optical
properties of the 150 GHz camera modules. The modules consist of
photolithographed arrays of TES polarimeters coupled to silicon platelet arrays
of corrugated feedhorns, both of which are fabricated at NIST-Boulder. In
addition to mounting hardware and RF shielding, each module also contains a set
of passive readout electronics for digital frequency-domain multiplexing. A
single module, therefore, is fully functional as a miniature focal plane and
can be tested independently. Across the modules tested before deployment, the
detectors average a critical temperature of 478 mK, normal resistance R_N of
1.2 Ohm, unloaded saturation power of 22.5 pW, (detector-only) optical
efficiency of ~ 90%, and have electrothermal time constants < 1 ms in
transition.Comment: 15 pages, 11 figure
Measurement of Leptonic Asymmetries and Top Quark Polarization in ttbar Production
We present measurements of lepton (l) angular distributions in ttbar -> W+ b
W- b -> l+ nu b l- nubar bbar decays produced in ppbar collisions at a
center-of-mass energy of sqrt(s)=1.96TeV, where l is an electron or muon. Using
data corresponding to an integrated luminosity of 5.4fb^-1, collected with the
D0 detector at the Fermilab Collider, we find that the angular distributions of
l- relative to anti-protons and l+ relative to protons are in agreement with
each other. Combining the two distributions and correcting for detector
acceptance we obtain the forward-backward asymmetry A^l_FB = (5.8 +- 5.1(stat)
+- 1.3(syst))%, compared to the standard model prediction of A^l_FB (predicted)
= (4.7 +- 0.1)%. This result is further combined with the measurement based on
the analysis of the l+jets final state to obtain A^l_FB = (11.8 +- 3.2)%.
Furthermore, we present a first study of the top-quark polarization.Comment: submitted versio
Journal Staff
We present the first measurements of the differential cross section d sigma/dp(T)(gamma) for the production of an isolated photon in association with at least two b-quark jets. The measurements consider photons with rapidities vertical bar y(gamma)vertical bar < 1.0 and transverse momenta 30 < p(T)(gamma) < 200 GeV. The b-quark jets are required to have p(T)(jet) > 15 GeVand vertical bar y(jet)vertical bar < 1.5. The ratio of differential production cross sections for gamma + 2 b-jets to gamma + b-jet as a function of p(T)(gamma) is also presented. The results are based on the proton-antiproton collision data at root s = 1.96 TeV collected with the D0 detector at the Fermilab Tevatron Collider. The measured cross sections and their ratios are compared to the next- to- leading order perturbative QCD calculations as well as predictions based on the k(T)- factorization approach and those from the sherpa and pythia Monte Carlo event generators
- …