3,138 research outputs found

    Dynamics of carbon-concentrating mechanism induction and protein relocalization during the dark-to-light transition in synchronized Chlamydomonas reinhardtii.

    Get PDF
    In the model green alga Chlamydomonas reinhardtii, a carbon-concentrating mechanism (CCM) is induced under low CO2 in the light and comprises active inorganic carbon transport components, carbonic anhydrases, and aggregation of Rubisco in the chloroplast pyrenoid. Previous studies have focused predominantly on asynchronous cultures of cells grown under low versus high CO2. Here, we have investigated the dynamics of CCM activation in synchronized cells grown in dark/light cycles compared with induction under low CO2. The specific focus was to undertake detailed time course experiments comparing physiology and gene expression during the dark-to-light transition. First, the CCM could be fully induced 1 h before dawn, as measured by the photosynthetic affinity for inorganic carbon. This occurred in advance of maximum gene transcription and protein accumulation and contrasted with the coordinated induction observed under low CO2. Between 2 and 1 h before dawn, the proportion of Rubisco and the thylakoid lumen carbonic anhydrase in the pyrenoid rose substantially, coincident with increased CCM activity. Thus, other mechanisms are likely to activate the CCM before dawn, independent of gene transcription of known CCM components. Furthermore, this study highlights the value of using synchronized cells during the dark-to-light transition as an alternative means of investigating CCM induction.This is the author accepted manuscript. The final published version can be found in Plant Physiology via http:/​/​dx.​doi.​org/​10.​1104/​pp.​114.​24691

    Overcoming adversity through diversity: aquatic carbon concentrating mechanisms.

    Get PDF
    Carbon concentrating mechanism (CCM) systems, asso- ciated with evolutionarily diverse aquatic photosynthetic organisms, make a major contribution to global net primary productivity and marine carbon sequestration. Here, an overview of these global contributions is pre- sented from their evolutionary origins, including a pos- sible trigger for their diversi cation when the aqueous O2/CO2 ratio rose above parity, and a re-de nition of the paradox of phytoplankton. The reviews and research in the special issue also include molecular physiology and ecology of CCMs, through to future potential applications for sustaining carbon sequestration and supporting ter- restrial crop productivity

    Pyrenoid loss impairs carbon-concentrating mechanism induction and alters primary metabolism in Chlamydomonas reinhardtii.

    Get PDF
    Carbon-concentrating mechanisms (CCMs) enable efficient photosynthesis and growth in CO2-limiting environments, and in eukaryotic microalgae localisation of Rubisco to a microcompartment called the pyrenoid is key. In the model green alga Chlamydomonas reinhardtii, Rubisco preferentially relocalises to the pyrenoid during CCM induction and pyrenoid-less mutants lack a functioning CCM and grow very poorly at low CO2. The aim of this study was to investigate the CO2 response of pyrenoid-positive (pyr+) and pyrenoid-negative (pyr-) mutant strains to determine the effect of pyrenoid absence on CCM induction and gene expression. Shotgun proteomic analysis of low-CO2-adapted strains showed reduced accumulation of some CCM-related proteins, suggesting that pyr- has limited capacity to respond to low-CO2 conditions. Comparisons between gene transcription and protein expression revealed potential regulatory interactions, since Rubisco protein linker (EPYC1) protein did not accumulate in pyr- despite increased transcription, while elements of the LCIB/LCIC complex were also differentially expressed. Furthermore, pyr- showed altered abundance of a number of proteins involved in primary metabolism, perhaps due to the failure to adapt to low CO2. This work highlights two-way regulation between CCM induction and pyrenoid formation, and provides novel candidates for future studies of pyrenoid assembly and CCM function

    Rubisco and carbon-concentrating mechanism co-evolution across chlorophyte and streptophyte green algae.

    Get PDF
    Green algae expressing a carbon-concentrating mechanism (CCM) are usually associated with a Rubisco-containing micro-compartment, the pyrenoid. A link between the small subunit (SSU) of Rubisco and pyrenoid formation in Chlamydomonas reinhardtii has previously suggested that specific RbcS residues could explain pyrenoid occurrence in green algae. A phylogeny of RbcS was used to compare the protein sequence and CCM distribution across the green algae and positive selection in RbcS was estimated. For six streptophyte algae, Rubisco catalytic properties, affinity for CO2 uptake (K0.5 ), carbon isotope discrimination (δ13 C) and pyrenoid morphology were compared. The length of the βA-βB loop in RbcS provided a phylogenetic marker discriminating chlorophyte from streptophyte green algae. Rubisco kinetic properties in streptophyte algae have responded to the extent of inducible CCM activity, as indicated by changes in inorganic carbon uptake affinity, δ13 C and pyrenoid ultrastructure between high and low CO2 conditions for growth. We conclude that the Rubisco catalytic properties found in streptophyte algae have coevolved and reflect the strength of any CCM or degree of pyrenoid leakiness, and limitations to inorganic carbon in the aquatic habitat, whereas Rubisco in extant land plants reflects more recent selective pressures associated with improved diffusive supply of the terrestrial environment.NE/L002507/1, BB/M007693/1, BB/I024518/1 (NERC, BBSRC and NSF). A Cambridge Trust Vice Chancellor’s award and Lucy Cavendish College, Cambridge, for supporting the PhD scholarship of MMMG. DJO and ECS acknowledge support from (BBSRC; grant number BB/I024488/1)

    Introducing an algal carbon-concentrating mechanism into higher plants: location and incorporation of key components.

    Get PDF
    Many eukaryotic green algae possess biophysical carbon-concentrating mechanisms (CCMs) that enhance photosynthetic efficiency and thus permit high growth rates at low CO2 concentrations. They are thus an attractive option for improving productivity in higher plants. In this study, the intracellular locations of ten CCM components in the unicellular green alga Chlamydomonas reinhardtii were confirmed. When expressed in tobacco, all of these components except chloroplastic carbonic anhydrases CAH3 and CAH6 had the same intracellular locations as in Chlamydomonas. CAH6 could be directed to the chloroplast by fusion to an Arabidopsis chloroplast transit peptide. Similarly, the putative inorganic carbon (Ci) transporter LCI1 was directed to the chloroplast from its native location on the plasma membrane. CCP1 and CCP2 proteins, putative Ci transporters previously reported to be in the chloroplast envelope, localized to mitochondria in both Chlamydomonas and tobacco, suggesting that the algal CCM model requires expansion to include a role for mitochondria. For the Ci transporters LCIA and HLA3, membrane location and Ci transport capacity were confirmed by heterologous expression and H(14) CO3 (-) uptake assays in Xenopus oocytes. Both were expressed in Arabidopsis resulting in growth comparable with that of wild-type plants. We conclude that CCM components from Chlamydomonas can be expressed both transiently (in tobacco) and stably (in Arabidopsis) and retargeted to appropriate locations in higher plant cells. As expression of individual Ci transporters did not enhance Arabidopsis growth, stacking of further CCM components will probably be required to achieve a significant increase in photosynthetic efficiency in this species

    Predictors of treatment dropout in self-guided web-based interventions for depression: an ‘individual patient data’ meta-analysis

    Get PDF
    Background. It is well known that web-based interventions can be effective treatments for depression. However, dropout rates in web-based interventions are typically high, especially in self-guided web-based interventions. Rigorous empirical evidence regarding factors influencing dropout in self-guided web-based interventions is lacking due to small study sample sizes. In this paper we examined predictors of dropout in an individual patient data meta-analysis to gain a better understanding of who may benefit from these interventions. Method. A comprehensive literature search for all randomized controlled trials (RCTs) of psychotherapy for adults with depression from 2006 to January 2013 was conducted. Next, we approached authors to collect the primary data of the selected studies. Predictors of dropout, such as socio-demographic, clinical, and intervention characteristics were examined. Results. Data from 2705 participants across ten RCTs of self-guided web-based interventions for depression were analysed. The multivariate analysis indicated that male gender [relative risk (RR) 1.08], lower educational level (primary education, RR 1.26) and co-morbid anxiety symptoms (RR 1.18) significantly increased the risk of dropping out, while for every additional 4 years of age, the risk of dropping out significantly decreased (RR 0.94). Conclusions. Dropout can be predicted by several variables and is not randomly distributed. This knowledge may inform tailoring of online self-help interventions to prevent dropout in identified groups at ris
    • …
    corecore