3,420 research outputs found

    IN-SYNC. VIII. Primordial Disk Frequencies in NGC 1333, IC 348, and the Orion A Molecular Cloud

    Get PDF
    In this paper, we address two issues related to primordial disk evolution in three clusters (NGC 1333, IC 348, and Orion A) observed by the INfrared Spectra of Young Nebulous Clusters (IN-SYNC) project. First, in each cluster, averaged over the spread of age, we investigate how disk lifetime is dependent on stellar mass. The general relation in IC 348 and Orion A is that primordial disks around intermediate mass stars (2--5M⊙M_{\odot}) evolve faster than those around loss mass stars (0.1--1M⊙M_{\odot}), which is consistent with previous results. However, considering only low mass stars, we do not find a significant dependence of disk frequency on stellar mass. These results can help to better constrain theories on gas giant planet formation timescales. Secondly, in the Orion A molecular cloud, in the mass range of 0.35--0.7M⊙M_{\odot}, we provide the most robust evidence to date for disk evolution within a single cluster exhibiting modest age spread. By using surface gravity as an age indicator and employing 4.5 μm\mu m excess as a primordial disk diagnostic, we observe a trend of decreasing disk frequency for older stars. The detection of intra-cluster disk evolution in NGC 1333 and IC 348 is tentative, since the slight decrease of disk frequency for older stars is a less than 1-σ\sigma effect.Comment: 25 pages, 26 figures; submitted for publication (ApJ

    High signal-to-noise spectral characterization of the planetary-mass object HD 106906 b

    Get PDF
    We spectroscopically characterize the atmosphere of HD 106906b, a young low-mass companion near the deuterium burning limit. The wide separation from its host star of 7.1" makes it an ideal candidate for high S/N and high-resolution spectroscopy. We aim to derive new constraints on the spectral type, effective temperature, and luminosity of HD106906b and also to provide a high S/N template spectrum for future characterization of extrasolar planets. We obtained 1.1-2.5 μ\mum integral field spectroscopy with the VLT/SINFONI instrument with a spectral resolution of R~2000-4000. New estimates of the parameters of HD 106906b are derived by analyzing spectral features, comparing the extracted spectra to spectral catalogs of other low-mass objects, and fitting with theoretical isochrones. We identify several spectral absorption lines that are consistent with a low mass for HD 106906b. We derive a new spectral type of L1.5±\pm1.0, one subclass earlier than previous estimates. Through comparison with other young low-mass objects, this translates to a luminosity of log(L/L⊙L/L_\odot)=−3.65±0.08-3.65\pm0.08 and an effective temperature of Teff=1820±2401820\pm240 K. Our new mass estimates range between M=11.9−0.8+1.7MJupM=11.9^{+1.7}_{-0.8} M_{\rm Jup} (hot start) and M=14.0−0.5+0.2MJupM=14.0^{+0.2}_{-0.5} M_{\rm Jup} (cold start). These limits take into account a possibly finite formation time, i.e., HD 106906b is allowed to be 0--3 Myr younger than its host star. We exclude accretion onto HD 106906b at rates M˙>4.8×10−10MJup\dot{M}>4.8\times10^{-10} M_{\rm Jup}yr−1^{-1} based on the fact that we observe no hydrogen (Paschen-β\beta, Brackett-γ\gamma) emission. This is indicative of little or no circumplanetary gas. With our new observations, HD 106906b is the planetary-mass object with one of the highest S/N spectra yet. We make the spectrum available for future comparison with data from existing and next-generation (e.g., ELT and JWST) spectrographs.Comment: 11 pages, 5 figures. Accepted for publication in Astronomy & Astrophysics. Fully reduced spectra will be made available for download on CD

    Protoplanetary Disk Masses in the Young NGC 2024 Cluster

    Get PDF
    We present the results from a Submillimeter Array survey of the 887 micron continuum emission from the protoplanetary disks around 95 young stars in the young cluster NGC 2024. Emission was detected from 22 infrared sources, with flux densities from ~5 to 330 mJy; upper limits (at 3sigma) for the other 73 sources range from 3 to 24 mJy. For standard assumptions, the corresponding disk masses range from ~0.003 to 0.2Msolar, with upper limits at 0.002--0.01Msolar. The NGC 2024 sample has a slightly more populated tail at the high end of its disk mass distribution compared to other clusters, but without more information on the nature of the sample hosts it remains unclear if this difference is statistically significant or a superficial selection effect. Unlike in the Orion Trapezium, there is no evidence for a disk mass dependence on the (projected) separation from the massive star IRS2b in the NGC 2024 cluster. We suggest that this is due to either the cluster youth or a comparatively weaker photoionizing radiation field.Comment: ApJ, in pres

    IN-SYNC. V. Stellar kinematics and dynamics in the Orion A Molecular Cloud

    Full text link
    The kinematics and dynamics of young stellar populations enable us to test theories of star formation. With this aim, we continue our analysis of the SDSS-III/APOGEE IN-SYNC survey, a high resolution near infrared spectroscopic survey of young clusters. We focus on the Orion A star-forming region, for which IN-SYNC obtained spectra of ∼2700\sim2700 stars. In Paper IV we used these data to study the young stellar population. Here we study the kinematic properties through radial velocities (vrv_r). The young stellar population remains kinematically associated with the molecular gas, following a ∼10 km s−1\sim10\:{\rm{km\:s}}^{-1} gradient along filament. However, near the center of the region, the vrv_r distribution is slightly blueshifted and asymmetric; we suggest that this population, which is older, is slightly in foreground. We find evidence for kinematic subclustering, detecting statistically significant groupings of co-located stars with coherent motions. These are mostly in the lower-density regions of the cloud, while the ONC radial velocities are smoothly distributed, consistent with it being an older, more dynamically evolved cluster. The velocity dispersion σv\sigma_v varies along the filament. The ONC appears virialized, or just slightly supervirial, consistent with an old dynamical age. Here there is also some evidence for on-going expansion, from a vrv_r--extinction correlation. In the southern filament, σv\sigma_v is ∼2\sim2--33 times larger than virial in the L1641N region, where we infer a superposition along the line of sight of stellar sub-populations, detached from the gas. On the contrary, σv\sigma_v decreases towards L1641S, where the population is again in agreement with a virial state.Comment: 14 pages, 13 figures, ApJ accepte

    Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals

    Get PDF
    We demonstrate the ability to control the spontaneous emission dynamics of self-assembled quantum dots via the local density of optical modes in 2D-photonic crystals. We show that an incomplete 2D photonic bandgap is sufficient to significantly lengthen the spontaneous emission lifetime (>2×>2\times) over a wide bandwidth (Δλ≥40\Delta\lambda\geq40 nm). For dots that are both \textit{spectrally} and \textit{spatially} coupled to strongly localized (Vmode∼1.5(λ/n)3V_{mode}\sim1.5(\lambda/n)^{3}), high Q∼2700Q\sim2700 optical modes, we have directly measured a strong Purcell enhanced shortening of the emission lifetime ≥5.6×\geq5.6\times, limited only by our temporal resolution. Analysis of the spectral dependence of the recombination dynamics shows a maximum lifetime shortening of 19±419\pm4. From the directly measured enhancement and suppression we show that the single mode coupling efficiency for quantum dots in such structures is at least β=92\beta=92% and is estimated to be as large as ∼97\sim97%.Comment: 11 pages, 3 figure

    New Frontiers for Terrestrial-sized to Neptune-sized Exoplanets In the Era of Extremely Large Telescopes

    Get PDF
    Surveys reveal that terrestrial- to Neptune-sized planets (1 <R<< R < 4 REarth_{\rm{Earth}}) are the most common type of planets in our galaxy. Detecting and characterizing such small planets around nearby stars holds the key to understanding the diversity of exoplanets and will ultimately address the ubiquitousness of life in the universe. The following fundamental questions will drive research in the next decade and beyond: (1) how common are terrestrial to Neptune-sized planets within a few AU of their host star, as a function of stellar mass? (2) How does planet composition depend on planet mass, orbital radius, and host star properties? (3) What are the energy budgets, atmospheric dynamics, and climates of the nearest worlds? Addressing these questions requires: a) diffraction-limited spatial resolution; b) stability and achievable contrast delivered by adaptive optics; and c) the light-gathering power of extremely large telescopes (ELTs), as well as multi-wavelength observations and all-sky coverage enabled by a comprehensive US ELT Program. Here we provide an overview of the challenge, and promise of success, in detecting and comprehensively characterizing small worlds around the very nearest stars to the Sun with ELTs. This white paper extends and complements the material presented in the findings and recommendations published in the National Academy reports on Exoplanet Science Strategy and Astrobiology Strategy for the Search for Life in the Universe.Comment: Astro2020 Science White Pape
    • …
    corecore