2,447 research outputs found

    Description of even-even triaxial Nuclei within the Coherent State and the Triaxial Rotation-Vibration Models

    Get PDF
    The coherent state model (CSM) and the triaxial rotation-vibration model (TRVM) are alternatively used to describe the ground, gamma and beta bands of 228Th. CSM is also applied to the nuclei 126Xe and 130Ba, which were recently considered in TRVM. The two models are compared with respect to both their underlying assumptions and to their predicted results for energy levels and E2 branching ratios. Both models describe energies and quadrupole transitions of 228Th equally well and in good agreement with experiment, if the 03+_3^+ level at 1120 keV is interpreted as the head of the beta band. The other two 0+^+ levels at 832 and 939 keV are most likely not of a pure quadrupole vibration nature as has already been pointed out in the literature.Comment: 31 pages, RevTeX, 6 figure

    Early History of the Moon: Zircon Perspective

    Get PDF
    The Moon is believed to have formed from debris produced by a giant impact of a Mars sized body with the Earth (at around 4.51 Ga), forming a primitive body with a thick global layer of melt referred to as the Lunar Magma Ocean (LMO). The crystallization of LMO created internal stratification of the Moon forming main geochemical reservoirs. The surface features on the Moon were shaped by the subsequent collision with several large impactors during a short period of time (3.9-4.0 Ga). This process known as the Late Heavy Bombardment is supported by models of planetary motion, suggesting that rapid migration of giant planets could have triggered a massive delivery of planetesimals from the asteroid belt into the inner Solar System at about 3.9 Ga. Although, general chronology of LMO and LHB is well established using both long lived (U-Pb, Rb-Sr, Sm-147-Nd-143 and Ar-Ar) and extinct (Hf-182-W-182 and 146Sm-142Nd) isotope systems, some of these systems such as Ar-Ar are known to reset easily during secondary thermal overprints. As a result important details in the timing of LMO and LHB remain unresolved. In addition, the relative weakness of these systems under high T conditions can potentially bias the chronological information towards later events in the history of the Moon

    Low-Luminosity Accretion in Black Hole X-ray Binaries and Active Galactic Nuclei

    Full text link
    At luminosities below a few percent of Eddington, accreting black holes switch to a hard spectral state which is very different from the soft blackbody-like spectral state that is found at higher luminosities. The hard state is well-described by a two-temperature, optically thin, geometrically thick, advection-dominated accretion flow (ADAF) in which the ions are extremely hot (up to 101210^{12} K near the black hole), the electrons are also hot (10910.5\sim10^{9-10.5} K), and thermal Comptonization dominates the X-ray emission. The radiative efficiency of an ADAF decreases rapidly with decreasing mass accretion rate, becoming extremely low when a source reaches quiescence. ADAFs are expected to have strong outflows, which may explain why relativistic jets are often inferred from the radio emission of these sources. It has been suggested that most of the X-ray emission also comes from a jet, but this is less well established.Comment: To appear in "From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales" edited by T. Maccarone, R. Fender, L. Ho, to be published as a special edition of "Astrophysics and Space Science" by Kluwe

    Lowering the critical temperature with eight-quark interactions

    Get PDF
    It is shown that eight-quark interactions, which are needed to stabilize the ground state of the combined three flavor Nambu -- Jona-Lasinio and 't Hooft Lagrangians, play also an important role in determining the critical temperature at which transitions occur from the dynamically broken chiral phase to the symmetric phase.Comment: 4 pages, 2 figure

    Accretion and ejection in black-hole X-ray transients

    Get PDF
    Aims: We summarize the current observational picture of the outbursts of black-hole X-ray transients (BHTs), based on the evolution traced in a hardness-luminosity diagram (HLD), and we offer a physical interpretation. Methods: The basic ingredient in our interpretation is the Poynting-Robertson Cosmic Battery (PRCB, Contopoulos & Kazanas 1998), which provides locally the poloidal magnetic field needed for the ejection of the jet. In addition, we make two assumptions, easily justifiable. The first is that the mass-accretion rate to the black hole in a BHT outburst has a generic bell-shaped form. This is guaranteed by the observational fact that all BHTs start their outburst and end it at the quiescent state. The second assumption is that at low accretion rates the accretion flow is geometrically thick, ADAF-like, while at high accretion rates it is geometrically thin. Results: Both, at the beginning and the end of an outburst, the PRCB establishes a strong poloidal magnetic field in the ADAF-like part of the accretion flow, and this explains naturally why a jet is always present in the right part of the HLD. In the left part of the HLD, the accretion flow is in the form of a thin disk, and such a disk cannot sustain a strong poloidal magnetic filed. Thus, no jet is expected in this part of the HLD. The counterclockwise traversal of the HLD is explained as follows: the poloidal magnetic field in the ADAF forces the flow to remain ADAF and the source to move upwards in the HLD rather than to turn left. Thus, the history of the system determines the counterclockwise traversal of the HLD. As a result, no BHT is expected to ever traverse the entire HLD curve in the clockwise direction. Conclusions: We offer a physical interpretation of accretion and ejection in BHTs with only one parameter, the mass transfer rate.Comment: Accepted for publication in A&

    Comparison of Aβb-/-, H2-DM-, and CIITA-/- in second-set skin allograft rejection

    Get PDF
    Background. Responses against donor MHC antigens are the major contributor to allograft rejection. Currently, it is unclear whether both direct and indirect recognition pathways are necessary and/or sufficient for allograft rejection. Previously, we found donor MHC class II and H2-DM to have dramatic effects on cardiac allograft survival. Methods. Here, we used H2-DM- mice, which express CLIP-MHC class II complexes, and CIITA-/- mice, which lack all class II proteins, to examine the role of direct and indirect recognition on skin allograft rejection. Recipients were primed with donor cultured keratinocytes and later tested for accelerated memory response by challenge with full-thickness tail skin grafts. Results. As previously reported, Aβb-/- grafts survived longer than wild-type grafts, while H2-DM- grafts were rejected as rapidly as wild-type grafts. Skin grafts deficient for both β2m and H2-DM survived longer than grafts lacking only H2-DM, but not as long as Aβb-/- grafts. Additionally, CIITA-/- grafts survived as long as Aβb-/- grafts. Conclusions. The delayed rejection of Aβb-/- compared to H2-DM- suggests that indirect recognition of surface-expressed donor MHC class II is sufficient to mediate rapid skin allograft rejection. The equivalent survival of CIITA-/- and Aβb-/- grafts suggests that indirect presentation of donor class II molecules (Aα or Eβ) present in Aβb-/- but not CIITA-/- mice does not contribute to graft rejection. These results reveal a modest role for surface-expressed donor class II in primed keratinocyte rejection, but also reveal a dramatic contrast to the cardiac allograft system and indicate tissue/organ-specific mechanisms of rejection

    Parametric instabilities excited by ECR-resonance heating in a mirror machine

    Full text link
    The process of phase randomization during electron cyclotron resonance heating has been studied intensely in different aspects with single particle approximations. Studies of parametric instabilities in plasmas introduce another system of interacting oscillators, namely plasma waves. The appearance of collective motion implies a different mechanism of phase randomization with time scales close to the inverse growth rate of the modulational instability shorter than the electron bounce frequency in the mirror trap. Systematic experiments on ECR-heating show the presence of both a spectral broadening of the pump wave as well as low frequency noise close to the lower hybrid frequency, which roughly corresponds to the growth rate of the instability. The necessity of considering potential noise, the plasma eigenmodes respectively, possibly leads to a change of the existing model of phase randomization based on the single particle motion

    OZI violating eight-quark interactions as a thermometer for chiral transitions

    Get PDF
    This work is a follow-up of our recent observation that in the SU(3) flavor limit with vanishing current quark masses the temperature for the chiral transition is substantially reduced by adding eight-quark interactions to the Nambu - Jona-Lasinio Lagrangian with U_A(1) breaking. Here we generalize the case to realistic light and strange quark masses and confirm our prior result. Additionally, we demonstrate that depending on the strength of OZI violating eight-quark interactions, the system undergoes either a rapid crossover or a first order phase transition. The meson mass spectra of the low lying pseudoscalars and scalars at T=0 are not sensitive to the difference in the parameter settings that correspond to these two alternatives, except for the singlet-octet mixing scalar channels, mainly the sigma meson.Comment: LaTeX, 5 pages, 3 figure

    Dynamics of Enceladus and Dione inside the 2:1 Mean-Motion Resonance under Tidal Dissipation

    Full text link
    In a previous work (Callegari and Yokoyama 2007, Celest. Mech. Dyn. Astr. vol. 98), the main features of the motion of the pair Enceladus-Dione were analyzed in the frozen regime, i.e., without considering the tidal evolution. Here, the results of a great deal of numerical simulations of a pair of satellites similar to Enceladus and Dione crossing the 2:1 mean-motion resonance are shown. The resonance crossing is modeled with a linear tidal theory, considering a two-degrees-of-freedom model written in the framework of the general three-body planar problem. The main regimes of motion of the system during the passage through resonance are studied in detail. We discuss our results comparing them with classical scenarios of tidal evolution of the system. We show new scenarios of evolution of the Enceladus-Dione system through resonance not shown in previous approaches of the problem.Comment: 36 pages, 12 figures. Accepted in Celestial Mechanics and Dynamical Astronom

    Quantum lattice dynamical effects on the single-particle excitations in 1D Mott and Peierls insulators

    Full text link
    As a generic model describing quasi-one-dimensional Mott and Peierls insulators, we investigate the Holstein-Hubbard model for half-filled bands using numerical techniques. Combining Lanczos diagonalization with Chebyshev moment expansion we calculate exactly the photoemission and inverse photoemission spectra and use these to establish the phase diagram of the model. While polaronic features emerge only at strong electron-phonon couplings, pronounced phonon signatures, such as multi-quanta band states, can be found in the Mott insulating regime as well. In order to corroborate the Mott to Peierls transition scenario, we determine the spin and charge excitation gaps by a finite-size scaling analysis based on density-matrix renormalization group calculations.Comment: 5 pages, 5 figure
    corecore