7,573 research outputs found

    Circumstellar Disk Evolution: Constraining Theories of Planet Formation

    Full text link
    Observations of circumstellar disks around stars as a function of stellar properties such as mass, metallicity, multiplicity, and age, provide constraints on theories concerning the formation and evolution of planetary systems. Utilizing ground- and space-based data from the far-UV to the millimeter, astronomners can assess the amount, composition, and location of circumstellar gas and dust as a function of time. We review primarily results from the Spitzer Space Telescope, with reference to other ground- and space-based observations. Comparing these results with those from exoplanet search techniques, theoretical models, as well as the inferred history of our solar system, helps us to assess whether planetary systems like our own, and the potential for life that they represent, are common or rare in the Milky Way galaxy.Comment: To appear in IAU Symposium No. 258, Eds. E. Mamajek, D.R. Soderblom, and R.F.G. Wys

    Unsupervised learning of overlapping image components using divisive input modulation

    Get PDF
    This paper demonstrates that nonnegative matrix factorisation is mathematically related to a class of neural networks that employ negative feedback as a mechanism of competition. This observation inspires a novel learning algorithm which we call Divisive Input Modulation (DIM). The proposed algorithm provides a mathematically simple and computationally efficient method for the unsupervised learning of image components, even in conditions where these elementary features overlap considerably. To test the proposed algorithm, a novel artificial task is introduced which is similar to the frequently-used bars problem but employs squares rather than bars to increase the degree of overlap between components. Using this task, we investigate how the proposed method performs on the parsing of artificial images composed of overlapping features, given the correct representation of the individual components; and secondly, we investigate how well it can learn the elementary components from artificial training images. We compare the performance of the proposed algorithm with its predecessors including variations on these algorithms that have produced state-of-the-art performance on the bars problem. The proposed algorithm is more successful than its predecessors in dealing with overlap and occlusion in the artificial task that has been used to assess performance

    The nearby population of M dwarfs with WISE: A search for warm circumstellar dust

    Full text link
    Circumstellar debris disks are important because of their connection to planetary systems. An efficient way to identify these systems is through their infrared excess. Most studies so far concentrated on early-type or solar-type stars, but less effort has gone into investigating M dwarfs. We characterize the mid-infrared photometric behavior of M dwarfs and search for infrared excess in nearby M dwarfs taken from the volume-limited RECONS sample using data from the WISE satellite and the 2MASS catalog. Our sample consists of 85 sources encompassing 103 M dwarfs. We derive empirical infrared colors from these data and discuss their errors. Based on this, we check the stars for infrared excess and discuss the minimum excess we would be able to detect. Other than the M8.5 dwarf SCR 1845-6357 A, where the excess is produced by a known T6 companion, we detect no excesses in any of our sample stars. The limits we derive for the 22um excess are slightly higher than the usual detection limit of 10-15% for Spitzer studies, but including the [12]-[22] color in our analysis allows us to derive tight constraints on the fractional dust luminosity L_dust/L_star. We show that this result is consistent with M dwarf excesses in the mid-inrared being as frequent as excesses around earlier-type stars. The low detection rate could be an age effect. We also present a tentative excess detection at 22um around the known cold debris disk M dwarf AU Mic, which is not part of our statistical sample. There is still no clear detection of a mid-infrared excess around any old (>30 Myr) main-sequence M dwarf. It is unclear whether this is due to a different dust evolution around M dwarfs or whether this is an age effect combined with the diffculties involved in searching M dwarfs for infrared excesses. A significantly larger sample of well-studied M dwarfs is required to solve this question.Comment: Accepted for publication in A&A, 15 pages, 7 figure

    On the gap-opening criterion of migrating planets in protoplanetary disks

    Full text link
    We perform two-dimensional hydrodynamical simulations to quantitatively explore the torque balance criterion for gap-opening (as formulated by Crida et al. 2006) in a variety of disks when considering a migrating planet. We find that even when the criterion is satisfied, there are instances when planets still do not open gaps. We stress that gap-opening is not only dependent on whether a planet has the ability to open a gap, but whether it can do so quickly enough. This can be expressed as an additional condition on the gap-opening timescale versus the crossing time, i.e. the time it takes the planet to cross the region which it is carving out. While this point has been briefly made in the previous literature, our results quantify it for a range of protoplanetary disk properties and planetary masses, demonstrating how crucial it is for gap-opening. This additional condition has important implications for the survival of planets formed by core accretion in low mass disks as well as giant planets or brown dwarfs formed by gravitational instability in massive disks. It is particularly important for planets with intermediate masses susceptible to Type III-like migration. For some observed transition disks or disks with gaps, we expect that estimates on the potential planet masses based on the torque balance gap-opening criterion alone may not be sufficient. With consideration of this additional timescale criterion theoretical studies may find a reduced planet survivability or that planets may migrate further inwards before opening a gap.Comment: Accepted by ApJ, 22 pages, 13 figures, 6 table
    corecore