10 research outputs found

    Towards deterministic optical quantum computation with coherently driven atomic ensembles

    Full text link
    Scalable and efficient quantum computation with photonic qubits requires (i) deterministic sources of single-photons, (ii) giant nonlinearities capable of entangling pairs of photons, and (iii) reliable single-photon detectors. In addition, an optical quantum computer would need a robust reversible photon storage devise. Here we discuss several related techniques, based on the coherent manipulation of atomic ensembles in the regime of electromagnetically induced transparency, that are capable of implementing all of the above prerequisites for deterministic optical quantum computation with single photons.Comment: 11 pages, 7 figure

    Two-photon linewidth of light "stopping" via electromagnetically induced transparency

    Full text link
    We analyze the two-photon linewidth of the recently proposed adiabatic transfer technique for ``stopping'' of light using electromagnetically induced transparency (EIT). We shown that a successful and reliable transfer of excitation from light to atoms and back can be achieved if the spectrum of the input probe pulse lies within the initial transparency window of EIT, and if the two-photon detuning δ\delta is less than the collective coupling strength (collective vacuum Rabi-frequency) gNg\sqrt{N} divided by γT\sqrt{\gamma T}, with γ\gamma being the radiative decay rate, NN the effective number of atoms in the sample, and TT the pulse duration. Hence in an optically thick medium light ``storage'' and retrieval is possible with high fidelity even for systems with rather large two-photon detuning or inhomogeneous broadening.Comment: 2 figure

    A stationary source of non-classical or entangled atoms

    Get PDF
    A scheme for generating continuous beams of atoms in non-classical or entangled quantum states is proposed and analyzed. For this the recently suggested transfer technique of quantum states from light fields to collective atomic excitation by Stimulated Raman adiabatic passage [M.Fleischhauer and M.D. Lukin, Phys.Rev.Lett. 84, 5094 (2000)] is employed and extended to matter waves

    From Storage and Retrieval of Pulses to Adiabatons

    Get PDF
    We investigate whether it is possible to store and retrieve the intense probe pulse from a Λ\Lambda-type homogeneous medium of cold atoms. Through numerical simulations we show that it is possible to store and retrieve the probe pulse which are not necessarily weak. As the intensity of the probe pulse increases, the retrieved pulse remains a replica of the original pulse, however there is overall broadening and loss of the intensity. These effects can be understood in terms of the dependence of absorption on the intensity of the probe. We include the dynamics of the control field, which becomes especially important as the intensity of the probe pulse increases. We use the theory of adiabatons [Grobe {\it et al.} Phys. Rev. Lett. {\bf 73}, 3183 (1994)] to understand the storage and retrieval of light pulses at moderate powers.Comment: 15 pages, 7 figures, typed in RevTe

    Slow Light in Doppler Broadened Two level Systems

    Get PDF
    We show that the propagation of light in a Doppler broadened medium can be slowed down considerably eventhough such medium exhibits very flat dispersion. The slowing down is achieved by the application of a saturating counter propagating beam that produces a hole in the inhomogeneous line shape. In atomic vapors, we calculate group indices of the order of 10^3. The calculations include all coherence effects.Comment: 6 pages, 5 figure

    A millisecond quantum memory for scalable quantum networks

    Full text link
    Scalable quantum information processing critically depends on the capability of storage of a quantum state. In particular, a long-lived storable and retrievable quantum memory for single excitations is of crucial importance to the atomic-ensemble-based long-distance quantum communication. Although atomic memories for classical lights and continuous variables have been demonstrated with milliseconds storage time, there is no equal advance in the development of quantum memory for single excitations, where only around 10 μ\mus storage time was achieved. Here we report our experimental investigations on extending the storage time of quantum memory for single excitations. We isolate and identify distinct mechanisms for the decoherence of spin wave (SW) in atomic ensemble quantum memories. By exploiting the magnetic field insensitive state, ``clock state", and generating a long-wavelength SW to suppress the dephasing, we succeed in extending the storage time of the quantum memory to 1 ms. Our result represents a substantial progress towards long-distance quantum communication and enables a realistic avenue for large-scale quantum information processing.Comment: 11pages, 4 figures, submitted for publicatio
    corecore