174 research outputs found

    Carbohydrate scaffolds as glycosyltransferase inhibitors with in vivo antibacterial activity

    Get PDF
    The rapid rise of multi-drug-resistant bacteria is a global healthcare crisis, and new antibiotics are urgently required, especially those with modes of action that have low-resistance potential. One promising lead is the liposaccharide antibiotic moenomycin that inhibits bacterial glycosyltransferases, which are essential for peptidoglycan polymerization, while displaying a low rate of resistance. Unfortunately, the lipophilicity of moenomycin leads to unfavourable pharmacokinetic properties that render it unsuitable for systemic administration. In this study, we show that using moenomycin and other glycosyltransferase inhibitors as templates, we were able to synthesize compound libraries based on novel pyranose scaffold chemistry, with moenomycin-like activity, but with improved drug-like properties. The novel compounds exhibit in vitro inhibition comparable to moenomycin, with low toxicity and good efficacy in several in vivo models of infection. This approach based on non-planar carbohydrate scaffolds provides a new opportunity to develop new antibiotics with low propensity for resistance induction

    Carbohydrates as Scaffolds in Drug Discovery

    No full text

    The solid phase synthesis of dihydro- and tetrahydroisoquinolines

    No full text
    Tetrahydroisoquinolines have been synthesised on Merrifield resin in good yields and high purity via the Bischler-Napieralski approach. A one pot multiple synthesis was developed and the reaction sequence monitored using ionspray mass spectrometry
    corecore