54 research outputs found

    Time-resolved investigation of the compensation process of pulsed ion beams

    Get PDF
    A LEBT system consisting of an ion source, two solenoids, and a diagnostic section has been set up to investigate the space charge compensation process due to residual gas ionization [1] and to study experimentally the rise of compensation. To gain the radial beam potential distribution time resolved measurements of the residual gas ion energy distribution were carried out using a Hughes Rojanski analyzer [2,3]. To measure the radial density profile of the ion beam a CCD-camera performed time resolved measurements, which allow an estimation the rise time of compensation. Further the dynamic effect of the space charge compensation on the beam transport was shown. A numerical simulation under assumption of selfconsistent states [4] of the beam plasma has been used to determine plasma parameters such as the radial density profile and the temperature of the electrons. The acquired data show that the theoretical estimated rise time of space charge compensation neglecting electron losses is shorter than the build up time determined experimentally. An interpretation of the achieved results is given

    Non destructive determination of beam emittance for low energy ion beams using CCD camera measurements

    Get PDF
    The determination of the beam emittance using conventional destructive methods suffers from two main disadvantages. The interaction between the ion beam and the measurement device produces a high amount of secondary particles. Those particles interact with the beam and can change the transport properties of the accelerator. Particularly in the low energy section of high current accelerators like proposed for IFMIF, heavy ion inertial fusion devices (HIDIF) and spallation sources (ESS, SNS) the power deposited on the emittance measurement device can lead to extensive heat on the detector itself and can destruct or at least dejust the device (slit or grit for example). CCD camera measurements of the incident light emitted from interaction of beam ions with residual gas are commonly used for determination of the beam emittance. Fast data acquisition and high time resolution are additional features of such a method. Therefore a matrix formalism is used to derive the emittance from the measured profile of the beam [1,2] which does not take space charge effects and emittance growth into account. A new method to derive the phase space distribution of the beam from a single CCD camera image using statistical numerical methods will be presented together with measurements. The results will be compared with measurements gained from a conventional Allison type (slit-slit) emittance measurement device

    Influence of space charge fluctuations on the low energy beam transport of high current ion beams

    Get PDF
    For future high current ion accelerators like SNS, ESS or IFMIF the beam behaviour in low energy beam transport sections is dominated by space charge forces. Therefore space charge fluctuations (e. g. source noise) can drastically influence the beam transport properties of the low energy beam transport section. Losses of beam ions and emittance growth are the most severe problems. For electrostatic transport systems either a LEBT design has to be found which is insensitive to variations of the space charge or the origin of the fluctuations has to be eliminated. For space charge compensated transport as proposed for ESS and IFMIF the situation is different: No major influence on beam transport is expected for fluctuations below a cut-off frequency given by the production rate of the compensation particles. Above this frequency the fluctuations can not be compensated by particle production alone, but redistributions of the compensation particles helps to compensate the influence of the fluctuations. Above a second cut-off frequency given by the density and the temperature of the compensation particles their redistribution is too slow to reduce the influence of the space charge fluctuations. Transport simulations for the IFMIF injector including space charge fluctuations will be presented together with a determination of the cut-off frequencies. The results will be compared with measurements of the rise time of space charge compensation

    Study of space charge compensated LEBT for ESS

    Get PDF
    To fulfil the requirements of ESS on beam transmission and emittance growth a detailed knowledge of the physics of beam formation as well as the interaction of the H- with the residual gas is substantial. Space charge compensated beam transport using solenoids for ion optics is in favour for the Low Energy Beam Transport (LEBT) between ion source and the first RFQ. Space charge compensation reduces the electrical self fields and beam radii and therefore emittance growth due to aberrations and redistribution. Transport of H- near the ion source is negatively influenced by the dipole fields required for beam extraction and e--dumping and the high gas pressure. The destruction of the rotational symmetry together with the space charge forces causes emittance growth and particle losses within the extraction system. High residual gas pressure near the extractor together with the high cross section for stripping will influence the transmission as well as space charge compensation. Therefore a detailed knowledge of the interaction of the residual gas with the beam and the influence of the external fields on the distribution of the compensation particles is necessary to reduce particle losses and emittance growth. Preliminary experiments using positive hydrogen ions for reference already show the influence of dipole fields on beam emittance. First measurements with H- confirm these results. Additional information on the interactions of the residual gas with the beam ions have been gained from the measurements using the momentum and energy analyser

    Investigation of the focus shift due to compensation process for low energy ion beam transport

    Get PDF
    In magnetic Low Energy Beam Transport (LEBT) sections space charge compensation helps to enhance the transportable beam current and to reduce emittance growth due to space charge forces. For pulsed beams the time neccesary to establish space charge compensation is of great interest for beam transport. Particularly with regard to beam injection into the first accelerator section (e.g. RFQ) investigation of effects on shift of the beam focus due to space charge compensation are very important. The achieved results helps to obviate a mismatch into the first RFQ. To investigate the space charge compensation due to residual gas ionization, time resolved measurements using pulsed ion beams were performed at the LEBT system at the IAP and at the CEA-Saclay injektion line. A residual gas ion energy analyser (RGIA) equiped with a channeltron was used to measure the potential destribution as a function of time to estimate the rise time of compensation. For time resolved measurements (delta t min=50ns) of the radial density profile of the ion beam a CCD-camera was applied. The measured data were used in a numerical simulation of selfconsistant eqilibrium states of the beam plasma [1] to determine plasma parameters such as the density, the temperature, the kinetic and potential energy of the compensation electrons as a function of time. Measurements were done using focused proton beams (10keV, 2mA at IAP and 92keV, 62mA at CEA-Saclay) to get a better understanding of the influence of the compensation process. An interpretation of the acquired data and the achieved results will be presented

    Focussing and transport of ion beams using space charge lenses

    Get PDF
    In einer Gabor-Linse wird durch ein axiales magnetisches Feld und ein longitudinales Potential ein so genanntes nichtneutrales Plasma (NNP) stabil eingeschlossen. Das elektrische Feld der Ladungsträgerwolke wirkt fokussierend auf Ionenstrahlen, die das Linsenvolumen passieren. Dieses Konzept, das D. Gabor 1946 vorstellte, wurde hinsichtlich seiner Eignung zur Ionenstrahlfokussierung seit den 1970-er Jahren untersucht, denn Gabor-Linsen ermöglichen eine elektrostatische Fokussierung erster Ordnung bei gleichzeitiger Raumladungskompensation im gesamten Transportkanal und haben damit einen großen Vorteil gegenüber den konventionellen Linsensystemen. Hauptsächlich zwei Gründe sprachen jedoch nach den meisten Experimenten gegen einen Einsatz dieses Linsentyps in Beschleunigern: Die erreichte Einschlusseffizienz und die Abbildungseigenschaften der eingeschlossenen Raumladungswolke blieben weit hinter den Erwartungen zurück. Erst ein geändertes Konzept zur Befüllung der Linse mit Elektronen und ein parallel zu den Experimenten entwickeltes numerisches Verfahren zur Bestimmung der Plasmaparameter ermöglichte die Entwicklung eines Linsensystems, das die Vorteile gegenüber konventionellen Ionenoptiken sichtbar werden ließ In der vorliegenden Arbeit wird neben der theoretischen Beschreibung des Plasmaeinschlusses der Aufbau und die Funktionsweise einer Gabor-Linse dargestellt. Experimentelle Befunde zur Strahlinjektion in einen RFQ unter Verwendung einer LEBT-Sektion, bestehend aus zwei Gabor-Linsen werden präsentiert. Nach der Beschleunigung des Ionenstrahles durch einen RFQ auf eine Energie von etwa 440 keV sollten Transportexperimente zeigen, ob eine neu entwickelte Hochfeld Gabor-Linse (HGL) zur Fokussierung dieses Strahles eingesetzt werden kann. Die Strahlenergie ist dabei mit der vergleichbar, die im HIF-Projekt (Heavy Ion Fusion) für die Injektion des Bi1+-Strahles in die erste Beschleunigerstruktur geplant ist. Insbesondere war bei den Experimenten mit dem durch den RFQ beschleunigten Strahl die Einschlusseffizienz bezüglich der Elektronendichte in der HGL von Interesse und auch das Verhalten des NNP bei der Fokussierung eines gepulsten Ionenstrahles.Gabor lenses provide strong cylinder symmetric focusing for low energy ion beams using a confined nonneutral plasma. They need drastically reduced magnetic and electrostatic field strength or a reduced installation length to provide a given focal length compared with conventional LEBT – systems like quadrupoles and magnetic solenoids. The density distribution of the enclosed space charge is given by the enclosure conditions in transverse and longitudinal direction. For homogeneous charge density distribution the resulting electrostatic field and therefrom the focusing forces inside the space charge cloud are linear. Additionally in case of a positive ion beam the space charge of the confined electrons causes compensation of the ion beam space charge forces. Hence all resolving forces on the beam ions are linear and thus the transformation is linear as well and the aberrations are minimal. Therefore space charge lenses are a serious alternative to inject space charge dominated low energy heavy ion beams into an RFQ. To study the capabilities of a Gabor double lens system to match an ion beam into an RFQ a testinjector was installed at IAP and put into operation successfully. Furthermore to verify the beam focusing of bunched beams using this lens type at beam energies up to 500 keV a new high field Gabor lens was built and installed downstream of the RFQ. The experimental results will be presented together with numerical simulations

    The C5a/C5a receptor 1 axis controls tissue neovascularization through CXCL4 release from platelets

    Get PDF
    Platelets contribute to the regulation of tissue neovascularization, although the specific factors underlying this function are unknown. Here, we identified the complement anaphylatoxin C5a-mediated activation of C5a receptor 1 (C5aR1) on platelets as a negative regulatory mechanism of vessel formation. We showed that platelets expressing C5aR1 exert an inhibitory effect on endothelial cell functions such as migration and 2D and 3D tube formation. Growth factor- and hypoxia-driven vascularization was markedly increased in C5ar1(−/−) mice. Platelet-specific deletion of C5aR1 resulted in a proangiogenic phenotype with increased collateralization, capillarization and improved pericyte coverage. Mechanistically, we found that C5a induced preferential release of CXC chemokine ligand 4 (CXCL4, PF4) from platelets as an important antiangiogenic paracrine effector molecule. Interfering with the C5aR1-CXCL4 axis reversed the antiangiogenic effect of platelets both in vitro and in vivo. In conclusion, we identified a mechanism for the control of tissue neovascularization through C5a/C5aR1 axis activation in platelets and subsequent induction of the antiangiogenic factor CXCL4

    Collimation of high intensity ion beams

    No full text
    In­tense ion beams with small phase space oc­cu­pa­tion (high bril­liance) are manda­to­ry to keep beam loss­es low in high cur­rent in­jec­tor ac­cel­er­a­tors like those planned for FAIR. The low en­er­gy beam trans­port from the ion source to­wards the linac has to keep the emit­tance growth low and has to sup­port the op­ti­miza­tion of the ion source tune. The Frank­furt Neu­tron Source Fa­cil­i­ty FRANZ is cur­rent­ly under con­struc­tion. An in­tense beam of pro­tons (2 MeV, 200 mA) will be used for neu­tron pro­duc­tion using the Li7(p,n)Be7 re­ac­tion for stud­ies of the as­tro­phys­i­cal s-pro­cess. A col­li­ma­tion chan­nel, which can be ad­just­ed to allow the trans­port of beams with a cer­tain beam emit­tance, is an ideal tool to op­ti­mize the ion source tune in terms of beam bright­ness. There­fore a col­li­ma­tion chan­nel in the Low En­er­gy Beam Trans­port sec­tion will be used. Through de­fined aper­tures and transver­sal phase space ro­ta­tion using fo­cus­ing solenoids the beam halo as well as un­want­ed H2+ and H3+ frac­tions will be cut. The­o­ret­i­cal stud­ies which were car­ried out so far and a first de­sign of the setup will be pre­sent­ed

    Hyperlink Graph of the World Wide Web of 2012 (aggregated by first level subdomains)

    No full text
    Knowledge about the general graph structure of the hyperlink graph is important for designing ranking methods for search engines. To amend the ranking calculated by search engines for different websites, search engine optimization agencies focus on linkage structure for their clients. An extreme appearance of ranking manipulation manifests in spam networks, where pages and websites publishing dubious content try to increase their ratings by setting a massive number of links to other pages and retrieve backlinks. The WDC Hyperlink Graph on first level subdomain level has been extracted from the Common Crawl 2012 web corpus and covers 95 million first level subdomains, linked by almost 2 billion connections, which are derived from the hyperlinks of the pages contained by the first level subdomains
    corecore