4,733 research outputs found
Fast semiautomatic dimensional test set and data logger
System measures and records tolerance deviations of thermal-protection ceramic tiles in less than 30 seconds. Accuracy of the machine is within 0.001 inch
Hydrodynamic stress on fractal aggregates of spheres
We calculate the average hydrodynamic stress on fractal aggregates of spheres using Stokesian dynamics. We find that for fractal aggregates of force-free particles, the stress does not grow as the cube of the radius of gyration, but rather as the number of particles in the aggregate. This behavior is only found for random aggregates of force-free particles held together by hydrodynamic lubrication forces. The stress on aggregates of particles rigidly connected by interparticle forces grows as the radius of gyration cubed. We explain this behavior by examining the transmission of the tension along connecting lines in an aggregate and use the concept of a persistance length in order to characterize this stress transmission within an aggregate
Wildlife-livestock interactions and risk areas for cross-species spread of bovine tuberculosis
The transmission of diseases between livestock and wildlife can be a hindrance to effective disease control. Maintenance hosts and contact rates should be explored to further understand the transmission dynamics at the wildlife-livestock interface. Bovine tuberculosis (BTB) has been shown to have wildlife maintenance hosts and has been confirmed as present in the African buffalo (Syncerus caffer) in the Queen Elizabeth National Park (QENP) in Uganda since the 1960s. The first aim of this study was to explore the spatio-temporal spread of cattle illegally grazing within the QENP recorded by the Uganda Wildlife Authority (UWA) rangers in a wildlife crime database. Secondly, we aimed to quantify wildlife-livestock interactions and cattle movements, on the border of QENP, using a longitudinal questionnaire completed by 30 livestock owners. From this database, 426 cattle sightings were recorded within QENP in 8 years. Thirteen (3.1%) of these came within a 300 m–4 week space-time window of a buffalo herd, using the recorded GPS data. Livestock owners reported an average of 1.04 (95% CI 0.97–1.11) sightings of Uganda kob, waterbuck, buffalo or warthog per day over a 3-month period, with a rate of 0.22 (95% CI 0.20–0.25) sightings of buffalo per farmer per day. Reports placed 85.3% of the ungulate sightings and 88.0% of the buffalo sightings as further than 50 m away. Ungulate sightings were more likely to be closer to cattle at the homestead (OR 2.0, 95% CI 1.1–3.6) compared with the grazing area. Each cattle herd mixed with an average of five other cattle herds at both the communal grazing and watering points on a daily basis. Although wildlife and cattle regularly shared grazing and watering areas, they seldom came into contact close enough for aerosol transmission. Between species infection transmission is therefore likely to be by indirect or non-respiratory routes, which is suspected to be an infrequent mechanism of transmission of BTB. Occasional cross-species spillover of infection is possible, and the interaction of multiple wildlife species needs further investigation. Controlling the interface between wildlife and cattle in a situation where eradication is not being considered may have little impact on BTB disease control in cattle
Recommended from our members
Option values of low carbon technology policies: how to combine irreversibility effects and learning-by-doing in decisions
In this paper, the political dilemma of the deployment of a large-size low carbon technology (LCT) is analyzed. A simple dynamic model is developed to analyze the interrelation between irreversible investments and learning-by-doing within a context of exogenous uncertainty on carbon price. Contrasting results are obtained. In some cases, the usual irreversibility effects hold, fewer plants of the LCT should be developed when information is anticipated. In other cases, this result is reversed and information arrival can justify an early deployment of the LCT. More precisely, it is shown that marginal reasoning is limited when learning by-doing, and more generally endogenous technical change, is considered. When information arrival is anticipated the optimal policy can move from a corner optimum with no LCT deployment to an interior optimum with a strictly positive development
A numerical study of bifurcations in a barotropic shear flow
In the last few years, more and more evidence has emerged suggesting that transition to turbulence may be viewed as a succession of bifurcations to deterministic chaos. Most experimental and numerical observations have been restricted to Rayleigh-Benard convection and Taylor-Couette flow between concentric cylinders. An attempt is made to accurately describe the bifurcation sequence leading to chaos in a 2-D temporal free shear layer on the beta-plane. The beta-plane is a locally Cartesian reduction of the equations describing the dynamicss of a shallow layer of fluid on a rotating spherical planet. It is a valid model for large scale flows of interest in meteorology and oceanography
Quantum Flexoelectricity in Low Dimensional Systems
Symmetry breaking at surfaces and interfaces and the capability to support
large strain gradients in nanoscale systems enable new forms of
electromechanical coupling. Here we introduce the concept of quantum
flexoelectricity, a phenomenon that is manifested when the mechanical
deformation of non-polar quantum systems results in the emergence of net dipole
moments and hence linear electromechanical coupling proportional to local
curvature. The concept is illustrated in carbon systems, including
polyacetylene and nano graphitic ribbons. Using density functional theory
calculations for systems made of up to 400 atoms, we determine the
flexoelectric coefficients to be of the order of ~ 0.1 e, in agreement with the
prediction of linear theory. The implications of quantum flexoelectricity on
electromechanical device applications, and physics of carbon based materials
are discussed.Comment: 15 pages, 3 figure
Rfx6 Maintains the Functional Identity of Adult Pancreatic β Cells.
SummaryIncreasing evidence suggests that loss of β cell characteristics may cause insulin secretory deficiency in diabetes, but the underlying mechanisms remain unclear. Here, we show that Rfx6, whose mutation leads to neonatal diabetes in humans, is essential to maintain key features of functionally mature β cells in mice. Rfx6 loss in adult β cells leads to glucose intolerance, impaired β cell glucose sensing, and defective insulin secretion. This is associated with reduced expression of core components of the insulin secretion pathway, including glucokinase, the Abcc8/SUR1 subunit of KATP channels and voltage-gated Ca2+ channels, which are direct targets of Rfx6. Moreover, Rfx6 contributes to the silencing of the vast majority of “disallowed” genes, a group usually specifically repressed in adult β cells, and thus to the maintenance of β cell maturity. These findings raise the possibility that changes in Rfx6 expression or activity may contribute to β cell failure in humans
- …