23 research outputs found
Pharmacokinetic-Pharmacodynamic Modeling of the D2 and 5-HT2A Receptor Occupancy of Risperidone and Paliperidone in Rats
A pharmacokinetic-pharmacodynamic (PK-PD) model was developed to describe the time course of brain concentration and dopamine D-2 and serotonin 5-HT2A receptor occupancy (RO) of the atypical antipsychotic drugs risperidone and paliperidone in rats.
A population approach was utilized to describe the PK-PD of risperidone and paliperidone using plasma and brain concentrations and D-2 and 5-HT2A RO data. A previously published physiology- and mechanism-based (PBPKPD) model describing brain concentrations and D-2 receptor binding in the striatum was expanded to include metabolite kinetics, active efflux from brain, and binding to 5-HT2A receptors in the frontal cortex.
A two-compartment model best fit to the plasma PK profile of risperidone and paliperidone. The expanded PBPKPD model described brain concentrations and D-2 and 5-HT2A RO well. Inclusion of binding to 5-HT2A receptors was necessary to describe observed brain-to-plasma ratios accurately. Simulations showed that receptor affinity strongly influences brain-to-plasma ratio pattern.
Binding to both D-2 and 5-HT2A receptors influences brain distribution of risperidone and paliperidone. This may stem from their high affinity for D-2 and 5-HT2A receptors. Receptor affinities and brain-to-plasma ratios may need to be considered before choosing the best PK-PD model for centrally active drugs
A predictive model for substrates of cytochrome P450-debrisoquine (2D6)
Molecular modeling techniques were used to derive a predictive model for substrates of cytochrome P450 2D6, an isozyme known to metabolize only compounds with one or more basic nitrogen atoms. Sixteen substrates, accounting for 23 metabolic reactions, with a distance of either 5 A ("5-A substrates", e.g., debrisoquine) or 7 A ("7-A substrates", e.g., dextromethorphan) between oxidation site and basic nitrogen atom were fitted into one model by postulating an interaction of the basic nitrogen atom with a negatively charged carboxylate group on the protein. This acidic residue anchors and neutralizes the positively charged basic nitrogen atom of the substrates. In case of "5-A substrates" this interaction probably occurs with the carboxylic oxygen atom nearest to the oxidation site, whereas in the case of "7-A substrates" this interaction takes place at the other oxygen atom. Furthermore, all substrates exhibit a coplanar conformation near the oxidation site and have negative molecular electrostatic potentials (MEPs) in a part of this planar domain approximately 3 A away from the oxidation site. No common features were found in the neighbourhood of the basic nitrogen atom of the substrates studied so that this region of the active site can accommodate a variety of N-substituents. Therefore, the substrate specificity of P450 2D6 most likely is determined by the distance between oxidation site and basic nitrogen atom, by steric constraints near the oxidation site, and by the degree of complementarity between the MEPs of substrate and protein in the planar region adjacent to the oxidation site.(ABSTRACT TRUNCATED AT 250 WORDS