6,471 research outputs found
Comment on "Mechanical analog of temperature for the description of force distribution in static granular packings"
It has been proposed by Ngan [Phys. Rev. E 68, 011301 (2003)] that the
granular contact force distribution may be analytically derived by minimizing
the analog of a thermodynamic free energy, in this case consisting of the total
potential energy stored in the compressed contacts minus a particular form of
entropy weighted by a parameter. The parameter is identified as a mechanical
temperature. I argue that the particular form of entropy cannot be correct and
as a result the proposed method produces increasingly errant results for
increasing grain rigidity. This trend is evidenced in Ngan's published results
and in other numerical simulations and experiments.Comment: 4 pages, 1 figure, minor editorial correction
Algorithm based comparison between the integral method and harmonic analysis of the timing jitter of diode-based and solid-state pulsed laser sources
AbstractA comparison between two methods of timing jitter calculation is presented. The integral method utilizes spectral area of the single side-band (SSB) phase noise spectrum to calculate root mean square (rms) timing jitter. In contrast the harmonic analysis exploits the uppermost noise power in high harmonics to retrieve timing fluctuation. The results obtained show that a consistent timing jitter of 1.2ps is found by the integral method and harmonic analysis in gain-switched laser diodes with an external cavity scheme. A comparison of the two approaches in noise measurement of a diode-pumped Yb:KY(WO4)2 passively mode-locked laser is also shown in which both techniques give 2ps rms timing jitter
Leonardo's rule, self-similarity and wind-induced stresses in trees
Examining botanical trees, Leonardo da Vinci noted that the total
cross-section of branches is conserved across branching nodes. In this Letter,
it is proposed that this rule is a consequence of the tree skeleton having a
self-similar structure and the branch diameters being adjusted to resist
wind-induced loads
Tracing selection signatures in the pig genome gives evidence for selective pressures on a unique curly hair phenotype in Mangalitza
Selection for desirable traits and breed-specific phenotypes has left distinctive footprints in the genome of pigs. As representative of a breed with strong selective traces aiming for robustness, health and performance, the Mangalitza pig, a native curly-haired pig breed from Hungary, was investigated in this study. Whole genome sequencing and SNP chip genotyping was performed to detect runs of homozygosity (ROH) in Mangalitza and Mangalitza-crossbreeds. We identified breed specific ROH regions harboring genes associated with the development of the curly hair type and further characteristics of this breed. Further analysis of two matings of Mangalitza with straight-coated pig breeds confirmed an autosomal dominant inheritance of curly hair. Subsequent scanning of the genome for variant effects on this trait revealed two variants potentially affecting hair follicle development and differentiation. Validation in a large sample set as well as in imputed SNP data confirmed these variants to be Mangalitza-specific. Herein, we demonstrated how strong artificial selection has shaped the genome in Mangalitza pigs and left traces in the form of selection signatures. This knowledge on genomic variation promoting unique phenotypes like curly hair provides an important resource for futures studies unraveling genetic effects for special characteristics in livestock
New calibration procedures for airborne turbulence measurements and accuracy of the methane fluxes during the AirMeth campaigns
Low-level flights over tundra wetlands in Alaska and Canada have been conducted during the Airborne Measurements of Methane Emissions (AirMeth) campaigns to measure turbulent methane fluxes in the atmosphere. In this paper we describe the instrumentation and new calibration procedures for the essential pressure parameters required for turbulence sensing by aircraft that exploit suitable regular measurement flight legs without the need for dedicated calibration patterns. We estimate the accuracy of the mean wind and the turbulence measurements. We show that airborne measurements of turbulent fluxes of methane and carbon dioxide using cavity ring-down spectroscopy trace gas analysers together with established turbulence equipment achieve a relative accuracy similar to that of measurements of sensible heat flux if applied during low-level flights over natural area sources. The inertial subrange of the trace gas fluctuations cannot be resolved due to insufficient high-frequency precision of the analyser, but, since this scatter is uncorrelated with the vertical wind velocity, the covariance and thus the flux are reproduced correctly. In the covariance spectra the â7â3 drop-off in the inertial subrange can be reproduced if sufficient data are available for averaging. For convective conditions and flight legs of several tens of kilometres we estimate the flux detection limit to be about 4mgmâ2dâ1 for wâČCH4âČ, 1.4gmâ2dâ1 for wâČCO2âČ and 4.2Wmâ2 for the sensible heat flux
Fallow periods and landscape structure in areas of slash and burn agriculture (NE Brazilian Amazon).
Use of Micellar Casein Concentrate and Milk Protein Concentrate Treated with Transglutaminase in Imitation Cheese ProductsâUnmelted Texture
The amount of intact casein provided by dairy ingredients is a critical parameter in dairy-based imitation mozzarella cheese (IMC) formulation because it has a significant effect on unmelted textural parameters such as hardness. From a functionality perspective, rennet casein (RCN) is the preferred ingredient. Milk protein concentrate (MPC) and micellar casein concentrate (MCC) cannot provide the required functionality due to the higher steric stability of casein micelle. However, the use of transglutaminase (TGase) has the potential to modify the surface properties of MPC and MCC and may improve their functionality in IMC. The objective of this study was to determine the effect of TGase-treated MPC and MCC powders on the unmelted textural properties of IMC and compare them with IMC made using commercially available RCN. Additionally, we studied the degree of crosslinking by TGase in MPC and MCC retentates using capillary gel electrophoresis. Three lots of MCC and MPC retentate were produced from pasteurized skim milk via microfiltration and ultrafiltration, respectively, and randomly assigned to 1 of 3 treatments: no TGase (control); low TGase: 0.3 units/g of protein; and high TGase: 3.0 units/g of protein, followed by inactivation of enzyme (72°C for 10 min), and spray drying. Each MCC, MPC, and RCN was then used to formulate IMC that was standardized to 21% fat, 1% salt, 48% moisture, and 20% protein. The IMC were manufactured by blending, mixing, and heating ingredients (4.0 kg) in a twin-screw cooker. The capillary gel electrophoresis analysis showed extensive inter- and intramolecular crosslinking. The IMC formulation using the highest TGase level in MCC or MPC did not form an emulsion because of extensive crosslinking. In MPC with a high level of TGase, whey protein and casein crosslinking were observed. In contrast, crosslinking and hydrolysis of proteins were observed in MCC. The IMC made from MCC powder had significantly higher texture profile analysis hardness compared with the corresponding MPC powder. Further, many-to-one (multiple) comparisons using the Dunnett test showed no significant differences between IMC made using RCN and treatment powders in hardness. Our results demonstrated that TGase treatment causes crosslinking hydrolysis of MCC and MPC at higher TGase levels, and MPC and MCC have the potential to be used as ingredients in IMC applications
How branching can change the conductance of ballistic semiconductor devices
We demonstrate that branching of the electron flow in semiconductor
nanostructures can strongly affect macroscopic transport quantities and can
significantly change their dependence on external parameters compared to the
ideal ballistic case even when the system size is much smaller than the mean
free path. In a corner-shaped ballistic device based on a GaAs/AlGaAs
two-dimensional electron gas we observe a splitting of the commensurability
peaks in the magnetoresistance curve. We show that a model which includes a
random disorder potential of the two-dimensional electron gas can account for
the random splitting of the peaks that result from the collimation of the
electron beam. The shape of the splitting depends on the particular realization
of the disorder potential. At the same time magnetic focusing peaks are largely
unaffected by the disorder potential.Comment: accepted for publication in Phys. Rev.
Malignancies, Particularly B-Cell Lymphomas, Are a Frequent Cause of Mortality in Human Immunodeficiency Virus-1 Patients Despite Highly Active Antiretroviral Therapy
Human immunodeficiency virus (HIV)-1-infected individuals are affected by diseases at rates above those of their HIV-negative peers despite the increased life expectancy of the highly active antiretroviral therapy era. We followed a cohort of approximately 2000 HIV-1-infected patients for 5 years. The most frequent cause of death in this HIV-1-infected cohort was malignancy, with 39% of all classified deaths due to cancer. Among the cancer deaths, B-cell lymphomas were the most commonly seen malignancy, representing 34% of all cancer deaths. These lymphomas were very aggressive with a median survival ofdiagnosis
Three flavour Quark matter in chiral colour dielectric model
We investigate the properties of quark matter at finite density and
temperature using the nonlinear chiral extension of Colour Dielectric Model
(CCM). Assuming that the square of the meson fields devlop non- zero vacuum
expectation value, the thermodynamic potential for interacting three flavour
matter has been calculated. It is found that remain zero
in the medium whereas changes in the medium. As a result, and
quark masses decrease monotonically as the temperature and density of the quark
matter is increased.In the present model, the deconfinement density and
temperature is found to be lower compared to lattice results. We also study the
behaviour of pressure and energy density above critical temperature.Comment: Latex file. 5 figures available on request. To appear in Phys. Rev.
- âŠ