5,385 research outputs found

    Dual purpose optical instrument capable of simultaneously acting as spectrometer and diffractometer

    Get PDF
    A dual purpose optical instrument is described capable of simultaneously acting as a spectrometer and diffractometer to respectively perform elemental and structural analysis of an unknown sample. The diffractometer portion of the instrument employs a modified form of Seeman-Bohlin focusing which involves providing a line source of X-rays, a sample, and a detector, all on the same focal circle. The spectrometer portion of the instrument employs a fixedly mounted X-ray energy detector mounted outside of the plane of the focal circle

    Heat transfer in the tip region of a rotor blade simulator

    Get PDF
    In gas turbines, the blades of axial turbine stages rotate in close proximity to a stationary peripheral wall. Differential expansion of the turbine wheel, blades, and the shroud causes variations in the size of the clearance gap between blade tip and stationary shroud. The necessity to tolerate this differential thermal expansion dictates that the clearance gap cannot be eliminated altogether, despite accurate engine machining. Pressure differences between the pressure and suction sides of a blade drives a flow through the clearance gap. This flow, the tip leakage flow, is detrimental to engine performance. The primary detrimental effect of tip leakage flow is the reduction of turbine stage efficiency, and a second is the convective heat transfer associated with the flow. The surface area at the blade tip in contact with the hot working gas represents an additional thermal loading on the blade which, together with heat transfer to the suction and pressure side surface area, must be removed by the blade internal cooling flows. Experimental results concerned with the local heat transfer characteristics on all surfaces of shrouded, rectangular cavities are reported. A brief discussion of the mass transfer system used is given

    Heat transfer in the tip region of a rotor blade simulator

    Get PDF
    The objective of this study of heat transfer in the tip region of a rotor blade simulator is to acquire, through experimental and computational approaches, improved understanding of the nature of the flow and convective heat transfer in the blade tip region. Such information should enable designers to make more accurate predictions of performance and durability, and should support the future development of improved blade tip cooling schemes

    Improvement of rheological and functional properties of milk protein concentrate by hydrodynamic cavitation

    Full text link
    Spray drying at higher solids concentrations improves drying efficiency, and reduces the overall energy cost of milk powder production. As the performance of the evaporator prior to spray drying is limited by viscosity, several methods can be employed to reduce feed viscosity such as thermal pre-treatment or ultrasound. The method employed in this study was hydrodynamic cavitation (HC) on milk protein concentrate (MPC80). Rheological properties of the protein milk were observed to improve, with a reduction in viscosity by 20% and 56% upon the application of a cavitation rotor speed of 25 Hz and 50 Hz, respectively, due to the breakdown in protein gel structure and hence a decrease in the elastic modulus of the proteins. While HC did not adversely affect solubility, with the powders having on average a solubility of 97.5% at a reconstitution temperature of 50 °C, both bulk and tapped density increased when the emulsion was subjected to HC, owing to a reduction in particle size. This study therefore suggests the potential of using HC for a more efficient drying of high solids milk, while maintaining and/or improving the physicochemical properties of powders

    How branching can change the conductance of ballistic semiconductor devices

    Full text link
    We demonstrate that branching of the electron flow in semiconductor nanostructures can strongly affect macroscopic transport quantities and can significantly change their dependence on external parameters compared to the ideal ballistic case even when the system size is much smaller than the mean free path. In a corner-shaped ballistic device based on a GaAs/AlGaAs two-dimensional electron gas we observe a splitting of the commensurability peaks in the magnetoresistance curve. We show that a model which includes a random disorder potential of the two-dimensional electron gas can account for the random splitting of the peaks that result from the collimation of the electron beam. The shape of the splitting depends on the particular realization of the disorder potential. At the same time magnetic focusing peaks are largely unaffected by the disorder potential.Comment: accepted for publication in Phys. Rev.

    Thermodynamic formalism for contracting Lorenz flows

    Full text link
    We study the expansion properties of the contracting Lorenz flow introduced by Rovella via thermodynamic formalism. Specifically, we prove the existence of an equilibrium state for the natural potential ϕ^t(x,y,z):=tlogJ(x,y,z)cu\hat\phi_t(x,y, z):=-t\log J_{(x, y, z)}^{cu} for the contracting Lorenz flow and for tt in an interval containing [0,1][0,1]. We also analyse the Lyapunov spectrum of the flow in terms of the pressure

    Three flavour Quark matter in chiral colour dielectric model

    Get PDF
    We investigate the properties of quark matter at finite density and temperature using the nonlinear chiral extension of Colour Dielectric Model (CCM). Assuming that the square of the meson fields devlop non- zero vacuum expectation value, the thermodynamic potential for interacting three flavour matter has been calculated. It is found that and and remain zero in the medium whereas changes in the medium. As a result, uu and dd quark masses decrease monotonically as the temperature and density of the quark matter is increased.In the present model, the deconfinement density and temperature is found to be lower compared to lattice results. We also study the behaviour of pressure and energy density above critical temperature.Comment: Latex file. 5 figures available on request. To appear in Phys. Rev.
    corecore