259 research outputs found

    Experimental Gonococcal Infection in Male Volunteers: Cumulative Experience with Neisseria gonorrhoeae Strains FA1090 and MS11mkC

    Get PDF
    Experimental infection of male volunteers with Neisseria gonorrhoeae is safe and reproduces the clinical features of naturally acquired gonococcal urethritis. Human inoculation studies have helped define the natural history of experimental infection with two well-characterized strains of N. gonorrhoeae, FA1090 and MS11mkC. The human model has proved useful for testing the importance of putative gonococcal virulence factors for urethral infection in men. Studies with isogenic mutants have improved our understanding of the requirements for gonococcal LOS structures, pili, opacity proteins, IgA1 protease, and the ability of infecting organisms to obtain iron from human transferrin and lactoferrin during uncomplicated urethritis. The model also presents opportunities to examine innate host immune responses that may be exploited or improved in development and testing of gonococcal vaccines. Here we review results to date with human experimental gonorrhea

    Molecular identification of adenoviruses associated with respiratory infection in Egypt from 2003 to 2010.

    Get PDF
    BACKGROUND: Human adenoviruses of species B, C, and E (HAdV-B, -C, -E) are frequent causative agents of acute respiratory infections worldwide. As part of a surveillance program aimed at identifying the etiology of influenza-like illness (ILI) in Egypt, we characterized 105 adenovirus isolates from clinical samples collected between 2003 and 2010. METHODS: Identification of the isolates as HAdV was accomplished by an immunofluorescence assay (IFA) and confirmed by a set of species and type specific polymerase chain reactions (PCR). RESULTS: Of the 105 isolates, 42% were identified as belonging to HAdV-B, 60% as HAdV-C, and 1% as HAdV-E. We identified a total of six co-infections by PCR, of which five were HAdV-B/HAdV-C co-infections, and one was a co-infection of two HAdV-C types: HAdV-5/HAdV-6. Molecular typing by PCR enabled the identification of eight genotypes of human adenoviruses; HAdV-3 (n = 22), HAdV-7 (n = 14), HAdV-11 (n = 8), HAdV-1 (n = 22), HAdV-2 (20), HAdV-5 (n = 15), HAdV-6 (n = 3) and HAdV-4 (n = 1). The most abundant species in the characterized collection of isolates was HAdV-C, which is concordant with existing data for worldwide epidemiology of HAdV respiratory infections. CONCLUSIONS: We identified three species, HAdV-B, -C and -E, among patients with ILI over the course of 7 years in Egypt, with at least eight diverse types circulating

    Genome sequences of Human Adenovirus 14 isolates from mild respiratory cases and a fatal pneumonia, isolated during 2006-2007 epidemics in North America

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human adenovirus 14 (HAdV-14) is a recognized causative agent of epidemic febrile respiratory illness (FRI). Last reported in Eurasia in 1963, this virus has since been conspicuously absent in broad surveys, and was never isolated in North America despite inclusion of specific tests for this serotype in surveillance methods. In 2006 and 2007, this virus suddenly emerged in North America, causing high attack rate epidemics of FRI and, in some cases, severe pneumonias and occasional fatalities. Some outbreaks have been relatively mild, with low rates of progression beyond uncomplicated FRI, while other outbreaks have involved high rates of more serious outcomes.</p> <p>Methodology and Findings</p> <p>In this paper we present the complete genomic sequence of this emerging pathogen, and compare genomic sequences of isolates from both mild and severe outbreaks. We also compare the genome sequences of the recent isolates with those of the prototype HAdV-14 that circulated in Eurasia 30 years ago and the closely related sequence of HAdV-11a, which has been circulating in southeast Asia.</p> <p>Conclusions</p> <p>The data suggest that the currently circulating strain of HAdV-14 is closely related to the historically recognized prototype throughout its genome, though it does display a couple of potentially functional mutations in the fiber knob and E1A genes. There are no polymorphisms that suggest an obvious explanation for the divergence in severity between outbreak events, suggesting that differences in outcome are more likely environmental or host determined rather than viral genetics.</p

    Molecular Mining of Alleles in Water Buffalo Bubalus bubalis and Characterization of the TSPY1 and COL6A1 Genes

    Get PDF
    discovered in the process. gene in water buffalo, which localized to the Y chromosome.The MASA approach enabled us to identify several genes, including two of clinical significance, without screening an entire cDNA library. Genes identified with TGG repeats are not part of a specific family of proteins and instead are distributed randomly throughout the genome. Genes showing elevated expression in the testes and spermatozoa may prove to be potential candidates for in-depth characterization. Furthermore, their possible involvement in fertility or lack thereof would augment animal biotechnology

    Developmenrt of EST-SSR and genomic-SSR markers to assess genetic diversity in Jatropha Curcas L.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Jatropha curcas L. </it>has attracted a great deal of attention worldwide, regarding its potential as a new biodiesel crop. However, the understanding of this crop remains very limited and little genomic research has been done. We used simple sequence repeat (SSR) markers that could be transferred from <it>Manihot esculenta </it>(cassava) to analyze the genetic relationships among 45 accessions of <it>J. curcas </it>from our germplasm collection.</p> <p>Results</p> <p>In total, 187 out of 419 expressed sequence tag (EST)-SSR and 54 out of 182 genomic (G)-SSR markers from cassava were polymorphic among the <it>J. curcas </it>accessions. The EST-SSR markers comprised 26.20% dinucleotide repeats, 57.75% trinucleotide repeats, 7.49% tetranucleotide repeats, and 8.56% pentanucleotide repeats, whereas the majority of the G-SSR markers were dinucleotide repeats (62.96%). The 187 EST-SSRs resided in genes that are involved mainly in biological and metabolic processes. Thirty-six EST-SSRs and 20 G-SSRs were chosen to analyze the genetic diversity among 45 <it>J. curcas </it>accessions. A total of 183 polymorphic alleles were detected. On the basis of the distribution of these polymorphic alleles, the 45 accessions were classified into six groups, in which the genotype showed a correlation with geographic origin. The estimated mean genetic diversity index was 0.5572, which suggests that our <it>J. curcas </it>germplasm collection has a high level of genetic diversity. This should facilitate subsequent studies on genetic mapping and molecular breeding.</p> <p>Conclusion</p> <p>We identified 241 novel EST-SSR and G-SSR markers in <it>J. curcas</it>, which should be useful for genetic mapping and quantitative trait loci analysis of important agronomic traits. By using these markers, we found that the intergroup gene diversity of <it>J. curcas </it>was greater than the intragroup diversity, and that the domestication of the species probably occurred partly in America and partly in Hainan, China.</p

    Genetic Analysis of a Novel Human Adenovirus with a Serologically Unique Hexon and a Recombinant Fiber Gene

    Get PDF
    In February of 1996 a human adenovirus (formerly known as Ad-Cor-96-487) was isolated from the stool of an AIDS patient who presented with severe chronic diarrhea. To characterize this apparently novel pathogen of potential public health significance, the complete genome of this adenovirus was sequenced to elucidate its origin. Bioinformatic and phylogenetic analyses of this genome demonstrate that this virus, heretofore referred to as HAdV-D58, contains a novel hexon gene as well as a recombinant fiber gene. In addition, serological analysis demonstrated that HAdV-D58 has a different neutralization profile than all previously characterized HAdVs. Bootscan analysis of the HAdV-D58 fiber gene strongly suggests one recombination event

    Computational and Serologic Analysis of Novel and Known Viruses in Species Human Adenovirus D in Which Serology and Genomics Do Not Correlate

    Get PDF
    In November of 2007 a human adenovirus (HAdV) was isolated from a bronchoalveolar lavage (BAL) sample recovered from a biopsy of an AIDS patient who presented with fever, cough, tachycardia, and expiratory wheezes. To better understand the isolated virus, the genome was sequenced and analyzed using bioinformatic and phylogenomic analysis. The results suggest that this novel virus, which is provisionally named HAdV-D59, may have been created from multiple recombination events. Specifically, the penton, hexon, and fiber genes have high nucleotide identity to HAdV-D19C, HAdV-D25, and HAdV-D56, respectively. Serological results demonstrated that HAdV-D59 has a neutralization profile that is similar yet not identical to that of HAdV-D25. Furthermore, we observed a two-fold difference between the ability of HAdV-D15 and HAdV-D25 to be neutralized by reciprocal antiserum indicating that the two hexon proteins may be more similar in epitopic conformation than previously assumed. In contrast, hexon loops 1 and 2 of HAdV-D15 and HAdV-D25 share 79.13 and 92.56 percent nucleotide identity, respectively. These data suggest that serology and genomics do not always correlate

    Global Surveillance of Emerging Influenza Virus Genotypes by Mass Spectrometry

    Get PDF
    Effective influenza surveillance requires new methods capable of rapid and inexpensive genomic analysis of evolving viral species for pandemic preparedness, to understand the evolution of circulating viral species, and for vaccine strain selection. We have developed one such approach based on previously described broad-range reverse transcription PCR/electrospray ionization mass spectrometry (RT-PCR/ESI-MS) technology.Analysis of base compositions of RT-PCR amplicons from influenza core gene segments (PB1, PB2, PA, M, NS, NP) are used to provide sub-species identification and infer influenza virus H and N subtypes. Using this approach, we detected and correctly identified 92 mammalian and avian influenza isolates, representing 30 different H and N types, including 29 avian H5N1 isolates. Further, direct analysis of 656 human clinical respiratory specimens collected over a seven-year period (1999-2006) showed correct identification of the viral species and subtypes with >97% sensitivity and specificity. Base composition derived clusters inferred from this analysis showed 100% concordance to previously established clades. Ongoing surveillance of samples from the recent influenza virus seasons (2005-2006) showed evidence for emergence and establishment of new genotypes of circulating H3N2 strains worldwide. Mixed viral quasispecies were found in approximately 1% of these recent samples providing a view into viral evolution.Thus, rapid RT-PCR/ESI-MS analysis can be used to simultaneously identify all species of influenza viruses with clade-level resolution, identify mixed viral populations and monitor global spread and emergence of novel viral genotypes. This high-throughput method promises to become an integral component of influenza surveillance
    corecore