90 research outputs found

    The Ladder Rung Walking Task: A Scoring System and its Practical Application.

    Get PDF
    Progress in the development of animal models for/stroke, spinal cord injury, and other neurodegenerative disease requires tests of high sensitivity to elaborate distinct aspects of motor function and to determine even subtle loss of movement capacity. To enhance efficacy and resolution of testing, tests should permit qualitative and quantitative measures of motor function and be sensitive to changes in performance during recovery periods. The present study describes a new task to assess skilled walking in the rat to measure both forelimb and hindlimb function at the same time. Animals are required to walk along a horizontal ladder on which the spacing of the rungs is variable and is periodically changed. Changes in rung spacing prevent animals from learning the absolute and relative location of the rungs and so minimize the ability of the animals to compensate for impairments through learning. In addition, changing the spacing between the rungs allows the test to be used repeatedly in long-term studies. Methods are described for both quantitative and qualitative description of both fore- and hindlimb performance, including limb placing, stepping, co-ordination. Furthermore, use of compensatory strategies is indicated by missteps or compensatory steps in response to another limb’s misplacement

    Maternal circulating leukocytes display early chemotactic responsiveness during late gestation

    Get PDF
    Abstract Background Parturition has been widely described as an immunological response; however, it is unknown how this is triggered. We hypothesized that an early event in parturition is an increased responsiveness of peripheral leukocytes to chemotactic stimuli expressed by reproductive tissues, and this precedes expression of tissue chemotactic activity, uterine activation and the systemic progesterone/estradiol shift. Methods Tissues and blood were collected from pregnant Long-Evans rats on gestational days (GD) 17, 20 and 22 (term gestation). We employed a validated Boyden chamber assay, flow cytometry, quantitative real time-polymerase chain reaction, and enzyme-linked immunosorbent assays. Results We found that GD20 maternal peripheral leukocytes migrated more than those from GD17 when these were tested with GD22 uterus and cervix extracts. Leukocytes on GD20 also displayed a significant increase in chemokine (C-C motif) ligand 2 (Ccl2) gene expression and this correlated with an increase in peripheral granulocyte proportions and a decrease in B cell and monocyte proportions. Tissue chemotactic activity and specific chemokines (CCL2, chemokine (C-X-C motif) ligand 1/CXCL1, and CXCL10) were mostly unchanged from GD17 to GD20 and increased only on GD22. CXCL10 peaked on GD20 in cervical tissues. As expected, prostaglandin F2α receptor and oxytocin receptor gene expression increased dramatically between GD20 and 22. Progesterone concentrations fell and estradiol-17β concentrations increased in peripheral serum, cervical and uterine tissue extracts between GD20 and 22. Conclusion Maternal circulating leukocytes display early chemotactic responsiveness, which leads to their infiltration into the uterus where they may participate in the process of parturition

    Use of Rotorod as a Method for the Qualitative Analysis of Walking in Rat

    Get PDF
    The rotorod test, in which animals walk on a rotating drum, is widely used to assess motor status in laboratory rodents. Performance is measured by the duration that an animal stays up on the drum as a function of drum speed. Here we report that the task provides a rich source of information about qualitative aspects of walking movements. Because movements are performed in a fixed location, they can readily be examined using high-speed video recording methods. The present study was undertaken to examine the potential of the rotorod to reveal qualitative changes in the walking movements of hemi-Parkinson analogue rats, produced by injection of 6-hydroxydopamine (6-OHDA) into the right nigrostriatal bundle to deplete nigrostriatal dopamine (DA). Beginning on the day following surgery and then periodically over the next two months, the rats were filmed from frontal, lateral, and posterior views as they walked on the rotorod. Behavior was analyzed by frame-by-frame replay of the video records. Rating scales of stepping behavior indicated that the hemi-Parkinson rats were chronically impaired in their posture and in the use of the limbs contralateral to the DA-depletion. The contralateral limbs not only displayed postural and movement abnormalities, they participated less in initiating and sustaining propulsion than did the ipsilateral limbs. These findings not only reveal new deficits secondary to unilateral DA-depletion, but also show that the rotorod can provide a robust tool for the qualitative analysis of movement

    Lifespan psychomotor behaviour profiles of multigenerational prenatal stress and artificial food dye effects in rats

    Get PDF
    Sherpa Romeo green journal, open accessThe consumption of artificial food dye (AFD) during childhood and adolescence has been linked to behavioural changes, such as hyperactivity. It is possible that the vulnerability to AFDs is modified by prenatal stress. Common consequences of prenatal stress include hyperactivity, thus potentially leading to synergistic actions with AFDs. Here, we investigated the compounding effect of multigenerational prenatal stress (MPS) and AFD consumption on the development of hyperactivity and anxiety-related behaviours across the lifespan in male rats. MPS treatment involved a family history of four consecutive generations of prenatal stress (F4 generation). AFD treatment included a 4%-concentration of FD&C Red 40, FD&C Yellow 5, FD&C Yellow 6, and FD&C Blue 1 in the drinking water from postnatal days 22 to 50 to resemble juvenile and adolescent dietary exposure. Using several exploration tasks, animals were tested in motor activity and anxiety-like behaviours from adolescence to 13 months of age. MPS resulted in hyperactivity both early (50 days) and later in life (13 months), with normalized activity patterns at reproductive age. AFD consumption resulted in hyperactivity during consumption, which subsided following termination of treatment. Notably, both MPS and AFD promoted risk-taking behaviour in young adults (3 months). There were few synergistic effects between MPS and AFD in this study. The findings suggest that AFDs exert the most noticeable effects at the time of exposure. MPS, however, results in a characteristic lifespan profile of behavioural changes, indicating that development and aging represent particularly vulnerable periods in life during which a family history of prenatal stress may precipitate.Ye

    Enriched childhood experiences moderate age-related motor and cognitive decline

    Get PDF
    Sherpa Romeo green journal: open accessAging is associated with deterioration of skilled manual movement. Specifically, aging corresponds with increased reaction time, greater movement duration, segmentation of movement, increased movement variability, and reduced ability to adapt to external forces and inhibit previously learned sequences. Moreover,it is thought that decreased lateralization of neural function in older adults may point to increase neural recruitment as a compensatory response to deterioration of key frontal and intra-hemispheric networks, particularly of callosal structures. However, factors that mediate age-related motor decline are not well understood. Here we show that music training in childhood is associated with reduced age-related decline of bimanual and unimanual motor skills in a MIDI keyboard motor learning task. Compared to older adults without music training, older adults with more than a year of music training demonstrated proficient bimanual and unimanual movement, evidenced by enhanced speed and decreased movement errors. Further, this group demonstrated significantly better implicit learning in the weather prediction task, a non-motor task. The performance of older adults with music training in those tasks was comparable to young adults. Older adults, however, displayed greater verbal ability compared to young adults irrespective of a past history of music training. Our results indicate that music training early in life may reduce age-associated decline of neural motor and cognitive networks.Ye

    Identification of Bilateral Changes in TID1 Expression in the 6-OHDA Rat Model of Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) is a common neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra and the aggregation of α-synuclein into Lewy bodies. Existing therapies address motor dysfunction but do not halt progression of the disease. A still unresolved question is the biochemical pathway that modulates the outcome of protein misfolding and aggregation processes in PD. The molecular chaperone network plays an important defensive role against cellular protein misfolding and has been identified as protective in experimental models of protein misfolding diseases like PD. Molecular mechanisms underlying chaperone-neuroprotection are actively under investigation. Current evidence implicates a number of molecular chaperones in PD including Hsp25, Hsp70 and Hsp90, however their precise involvement in the neurodegenerative cascade is unresolved. The J protein family (DnaJ or Hsp40 protein family) has long been known to be important in protein conformational processes

    Environmental intervention as a therapy for adverse programming by ancestral stress

    Get PDF
    Sherpa Romeo green journal. Open access article. Creative Commons Attribution 4.0 International License (CC BY 4.0) appliesAncestral stress can program stress sensitivity and health trajectories across multiple generations. While ancestral stress is uncontrollable to the filial generations, it is critical to identify therapies that overcome transgenerational programming. Here we report that prenatal stress in rats generates a transgenerationally heritable endocrine and epigenetic footprint and elevated stress sensitivity which can be alleviated by beneficial experiences in later life. Ancestral stress led to downregulated glucocorticoid receptor and prefrontal cortex neuronal densities along with precocious development of anxiety-like behaviours. Environmental enrichment (EE) during adolescence mitigated endocrine and neuronal markers of stress and improved miR-182 expression linked to brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) regulation in stressed lineages. Thus, EE may serve as a powerful intervention for adverse transgenerational programming through microRNA-mediated regulation of BDNF and NT-3 pathways. The identification of microRNAs that mediate the actions of EE highlights new therapeutic strategies for mental health conditions and psychiatric disease.Ye

    Transgenerational programming of maternal behaviour by prenatal stress

    Get PDF
    Sherpa Romeo green journal. Open access, distributed under the terms of the Creative Commons Attribution (CC-BY) LicensePeripartum events hold the potential to have dramatic effects in the programming of physiology and behaviour of offspring and possibly subsequent generations. Here we have characterized transgenerational changes in rat maternal behaviour as a function of gestational and prenatal stress. Pregnant dams of the parental generation were exposed to stress from days 12-18 (F0-S). Their daughters and grand-daughters were either stressed (F1-SS, F2-SSS) or non-stressed (F1-SN, F2-SNN). Maternal antepartum behaviours were analyzed at a time when pregnant dams usually show a high frequency of tail chasing behaviours. F1-SS, F2-SNN and F2-SSS groups showed a significant reduction in tail chasing behaviours when compared with controls. The effects of multigenerational stress (SSS) slightly exceeded those of transgenerational stress (SNN) and resulted in absence of tail chasing behaviour. These findings suggest that antepartum maternal behaviour in rats is programmed by transgenerational inheritance of stress responses. Thus, altered antepartum maternal behaviour may serve as an indicator of an activated stress response during gestation.Ye

    Lifetime stress cumulatively programs brain transcriptome and impedes stroke recovery: benefit of sensory stimulation

    Get PDF
    Sherpa Romeo green journal, open accessPrenatal stress (PS) represents a critical variable affecting lifetime health trajectories, metabolic and vascular functions. Beneficial experiences may attenuate the effects of PS and its programming of health outcomes in later life. Here we investigated in a rat model (1) if PS modulates recovery following cortical ischemia in adulthood; (2) if a second hit by adult stress (AS) exaggerates stress responses and ischemic damage; and (3) if tactile stimulation (TS) attenuates the cumulative effects of PS and AS. Prenatally stressed and non-stressed adult male rats underwent focal ischemic motor cortex lesion and were tested in skilled reaching and skilled walking tasks. Two groups of rats experienced recurrent restraint stress in adulthood and one of these groups also underwent daily TS therapy. Animals that experienced both PS and AS displayed the most severe motor disabilities after lesion. By contrast, TS promoted recovery from ischemic lesion and reduced hypothalamic-pituitary-adrenal axis activity. The data also showed that cumulative effects of adverse and beneficial lifespan experiences interact with disease outcomes and brain plasticity through the modulation of gene expression. Microarray analysis of the lesion motor cortex revealed that cumulative PS and AS interact with genes related to growth factors and transcription factors, which were not affected by PS or lesion alone. TS in PS+AS animals reverted these changes, suggesting a critical role for these factors in activity-dependent motor cortical reorganization after ischemic lesion. These findings suggest that beneficial experience later in life can moderate adverse consequences of early programming to improve cerebrovascular health.Ye
    corecore