12 research outputs found

    Establishment of the CD4 T-cell pool in healthy children and untreated children infected with HIV-1

    No full text
    Current understanding of how the T-cell pool is established in children and how this is affected by HIV infection is limited. It is widely believed that the thymus is the main source for T cells during childhood. Here we show, however, that healthy children had an age-related increase in total body numbers of naive and memory T cells, whereas absolute numbers of T-cell receptor excision circles (TRECs) did not increase. This suggests that expansion of the naive T-cell pool after birth is more dependent on T-cell proliferation than was previously recognized. Indeed, the proportion of dividing naive T cells was high, especially in younger children, which is consistent with expansion through proliferation, in addition to antigen-mediated naive T-cell activation leading to formation of the memory T-cell pool. In untreated children infected with HIV-1, total body numbers of T cells and TRECs were low and stable, whereas T-cell division levels were significantly higher than in healthy children. We postulate that in children infected with HIV, similar to adults infected with HIV, continuous activation of naive T cells leads to erosion of the naive T-cell pool and may be a major factor in lowering CD4(+) T-cell numbers

    Cystathionine β-synthase mutations in homocystinuria

    No full text
    The major cause of homocystinuria is mutation of the gene encoding the enzyme cystathionine β-synthase (CBS). Deficiency of CBS activity results in elevated levels of homocysteine as well as methionine in plasma and urine and decreased levels of cystathionine and cysteine. Ninety-two different disease- associated mutations have been identified in the CBS gene in 310 examined homocystinuric alleles in more than a dozen laboratories around the world. Most of these mutations are missense, and the vast majority of these are private mutations. The two most frequently encountered of these mutations are the pyridoxine-responsive I278T and the pyridoxine-nonresponsive G307S. Mutations due to deaminations of methylcytosines represent 53% of all point substitutions in the coding region of the CBS gene

    Literaturverzeichnis

    No full text

    RNA Interference: Its Use as Antiviral Therapy

    No full text
    RNA interference (RNAi) is a sequence-specific gene-silencing mechanism that has been proposed to function as a defence mechanism of eukaryotic cells against viruses and transposons. RNAi was first observed in plants in the form of a mysterious immune response to viral pathogens. But RNAi is more than just a response to exogenous genetic material. Small RNAs termed microRNA (miRNA) regulate cellular gene expression programs to control diverse steps in cell development and physiology. The discovery that exogenously delivered short interfering RNA (siRNA) can trigger RNAi in mammalian cells has made it into a powerful technique for generating genetic knock-outs. It also raises the possibility to use RNAi technology as a therapeutic tool against pathogenic viruses. Indeed, inhibition of virus replication has been reported for several human pathogens including human immunodeficiency virus, the hepatitis B and C viruses and influenza virus. We reviewed the field of antiviral RNAi research in 2003 (Haasnoot et al. 2003), but many new studies have recently been published. In this review, we present a complete listing of all antiviral strategies published up to and including December 2004. The latest developments in the RNAi field and their antiviral application are describe
    corecore