23 research outputs found
Childbirth and consequent atopic disease: emerging evidence on epigenetic effects based on the hygiene and EPIIC hypotheses
Background: In most high and middle income countries across the world, at least 1:4 women give birth by cesarean
section. Rates of labour induction and augmentation are rising steeply; and in some countries up to 50 % of laboring
women and newborns are given antibiotics. Governments and international agencies are increasingly concerned about
the clinical, economic and psychosocial effects of these interventions.
Discussion: There is emerging evidence that certain intrapartum and early neonatal interventions might affect the
neonatal immune response in the longer term, and perhaps trans-generationally. Two theories lead the debate in this
area. Those aligned with the hygiene (or âOld Friendsâ) hypothesis have examined the effect of gut microbiome colonization
secondary to mode of birth and intrapartum/neonatal pharmacological interventions on immune response and epigenetic
phenomena. Those working with the EPIIC (Epigenetic Impact of Childbirth) hypothesis are concerned with the effects of
eustress and dys-stress on the epigenome, secondary to mode of birth and labour interventions.
Summary: This paper examines the current and emerging findings relating to childbirth and atopic/autoimmune
disease from the perspective of both theories, and proposes an alliance of research effort. This is likely to accelerate
the discovery of important findings arising from both approaches, and to maximize the timely understanding of the
longer-term consequences of childbirth practices
Laser spectroscopy for breath analysis : towards clinical implementation
Detection and analysis of volatile compounds in exhaled breath represents an attractive tool for monitoring the metabolic status of a patient and disease diagnosis, since it is non-invasive and fast. Numerous studies have already demonstrated the benefit of breath analysis in clinical settings/applications and encouraged multidisciplinary research to reveal new insights regarding the origins, pathways, and pathophysiological roles of breath components. Many breath analysis methods are currently available to help explore these directions, ranging from mass spectrometry to laser-based spectroscopy and sensor arrays. This review presents an update of the current status of optical methods, using near and mid-infrared sources, for clinical breath gas analysis over the last decade and describes recent technological developments and their applications. The review includes: tunable diode laser absorption spectroscopy, cavity ring-down spectroscopy, integrated cavity output spectroscopy, cavity-enhanced absorption spectroscopy, photoacoustic spectroscopy, quartz-enhanced photoacoustic spectroscopy, and optical frequency comb spectroscopy. A SWOT analysis (strengths, weaknesses, opportunities, and threats) is presented that describes the laser-based techniques within the clinical framework of breath research and their appealing features for clinical use.Peer reviewe
A molecular-based identification resource for the arthropods of Finland
To associate specimens identified by molecular characters to other biological knowledge, we need reference sequences annotated by Linnaean taxonomy. In this study, we (1) report the creation of a comprehensive reference library of DNA barcodes for the arthropods of an entire country (Finland), (2) publish this library, and (3) deliver a new identification tool for insects and spiders, as based on this resource. The reference library contains mtDNA COI barcodes for 11,275 (43%) of 26,437 arthropod species known from Finland, including 10,811 (45%) of 23,956 insect species. To quantify the improvement in identification accuracy enabled by the current reference library, we ran 1000 Finnish insect and spider species through the Barcode of Life Data system (BOLD) identification engine. Of these, 91% were correctly assigned to a unique species when compared to the new reference library alone, 85% were correctly identified when compared to BOLD with the new material included, and 75% with the new material excluded. To capitalize on this resource, we used the new reference material to train a probabilistic taxonomic assignment tool, FinPROTAX, scoring high success. For the full-length barcode region, the accuracy of taxonomic assignments at the level of classes, orders, families, subfamilies, tribes, genera, and species reached 99.9%, 99.9%, 99.8%, 99.7%, 99.4%, 96.8%, and 88.5%, respectively. The FinBOL arthropod reference library and FinPROTAX are available through the Finnish Biodiversity Information Facility (www.laji.fi) at https://laji.fi/en/theme/protax. Overall, the FinBOL investment represents a massive capacity-transfer from the taxonomic community of Finland to all sectors of society.</p
CAN ORTHO-PARA TRANSITIONS FOR WATER BE OBSERVED ?
Author Institution: Department of Physics and Astronomy, University College LondonThe whole of the water spectrum can be considered as the juxtaposition of the spectrum of two different molecules, with different total nuclear spin: ortho-, and para-. No transitions have ever been observed between the two different nuclear-spin isotopomers, and it is widely assumed that interconversion is forbidden without some other intervention. However weak nuclear spin/rotation interaction occurs and this can drive ortho to para transitions. More than 12000 experimental vibrational rotational levels for water have been assigned so far. In this work we explore the whole of the vibrational-rotational spectrum of water, calculate ab initio values for the nuclear spin/rotational constants, and predict in which part of the spectrum the strongest transitions between ortho and para levels of water could be experimentally observed