5 research outputs found

    Designing greenhouse subsystems for a lunar mission: the LOOPS - M Project

    Get PDF
    The 2020s is a very important decade in the space sector, where international cooperation is moving towards the exploration of the Moon and will lead to stable lunar settlements, which will require new, innovative, and efficient technologies. In this context, the project LOOPS–M (Lunar Operative Outpost for the Production and Storage of Microgreens) was created by students from Sapienza University of Rome with the objective of designing some of the main features of a lunar greenhouse. The project was developed for the IGLUNA 2021 campaign, an interdisciplinary platform coordinated by Space Innovation as part of the ESA Lab@ initiative. The LOOPS-M mission was successfully concluded during the Virtual Field Campaign that took place in July 2021. This project is a follow-up of the V-GELM Project, which took part in IGLUNA 2020 with the realization in Virtual Reality of a Lunar Greenhouse: a simulation of the main operations connected to the cultivation module, the HORT3 , which was already developed by ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development) during the AMADEE-18 mission inside the HORTSPACE project. This paper will briefly describe the main features designed and developed for the lunar greenhouse and their simulation in a VR environment: an autonomous cultivation system able to handle the main cultivation tasks of the previous cultivation system, a bioconversion system that can recycle into new resources the cultivation waste with the use of insects as a biodegradation system, and a shield able of withstanding hypervelocity impacts and the harsh lunar environment. A wide overview of the main challenges faced, and lessons learned by the team to obtain these results, will be given. The first challenge was the initial inexperience that characterized all the team members, being for most the first experience with an activity structured as a space mission, starting with little to no know-how regarding the software and hardware needed for the project, and how to structure documentation and tasks, which was acquired throughout the year. An added difficulty was the nature of LOOPS-M, which included very different objectives that required different fields of expertise, ranging from various engineering sectors to biology and entomology. During the year, the team managed to learn how to handle all these hurdles and the organizational standpoint, working as a group, even if remotely due to the Covid-19 pandemic. Through careful planning, hard work and the help of supervisors, the activity was carried out through reviews, up to the prototyping phase and the test campaign with a successful outcome in each aspect of the project. By the end of the year everyone involved had acquired new knowledge, both practical and theoretical, and learned how to reach out and present their work to sponsors and to the scientific community

    Design of a modular controlled unit for the study of bioprocesses. Towards solutions for bioregenerative life support systems in space

    No full text
    Space exploration beyond the Low Earth Orbit requires the establishment of Bioregenerative Life Support Systems (BLSSs), which, through bioprocesses for primary resource recycling, ensure crew survival. However, the introduction of new organisms in confined space habitats must be carefully evaluated in advance to avoid unforeseen events that could compromise the mission. In this work, we have designed and built an experimental chamber, named Growing/Rearing Module (GRM), completely isolated and equipped with micro-environmental monitoring and control systems. This unit is specially intended for the study of single bioprocesses, which can be composed to design functional BLSSs. GRM can be implemented with specific devices for the biological system under study and the control of environmental parameters such as temperature, humidity, lighting and if required, pressure of gaseous components. GRM was validated in experiments of both microgreen cultivation, as a source of fresh food for astronauts, and rearing of the decomposer insect Hermetia illucens for bioconversion of organic waste. During the study of each bioprocess, the environmental and biological data were recorded, allowing to make preliminary assessments of the system efficiency. The GRM, as a completely confined environment, represents the first self-consistent unit that allows to fine-tune the optimal parameters for the operability of different bioprocesses. Furthermore, the upgradability according to the mission needs and the functional integrability of modules differently equipped are the keys to GRM versatility, representing a valuable tool for BLSSs’ design

    Farming for Pharming: Novel Hydroponic Process in Contained Environment for Efficient Pharma-Grade Production of Saffron

    No full text
    Soilless cultivation of saffron (Crocus sativus) in a controlled environment represents an interesting alternative to field cultivation, in order to obtain a standardized high-quality product and to optimize yields. In particular, pharma-grade saffron is fundamental for therapeutic applications of this spice, whose efficacy has been demonstrated in the treatment of macular diseases, such as Age-related Macular Degeneration (AMD). In this work, a hydroponic cultivation system was developed, specifically designed to meet the needs of C. sativus plant. Various cultivation recipes, different in spectrum and intensity of lighting, temperature, photoperiod and irrigation, have been adopted to study their effect on saffron production. The experimentation involved the cultivation of corms from two subsequent farm years, to identify and validate the optimal conditions, both in terms of quantitative yield and as accumulation of bioactive metabolites, with particular reference to crocins and picrocrocin, which define the ‘pharma-grade’ quality of saffron. Through HPLC analysis and chromatography it was possible to identify the cultivation parameters suitable for the production of saffron with neuroprotective properties, evaluated by comparison with an ISO standard and the REPRON® procedure. Furthermore, the biochemical characterization was completed through NMR and high-resolution mass spectrometry analyses of saffron extracts. The whole experimental framework allowed to establish an optimized protocol to produce pharma-grade saffron, allowing up to 3.2 g/m2 harvest (i.e., more than three times higher than field production in optimal conditions), which meets the standards of composition for the therapy of AMD

    Interactions between immune, stress-related hormonal and cardiovascular systems following strenuous physical exercise

    No full text
    Physical exercise represents a eustress condition that promotes rapid coordinated adjustments in the immune, stress-related hormonal and cardiovascular systems, for maintaining homeostasis in response to increased metabolic demands. Compared to the tight multisystem coordination during exercise, evidence of between-systems cross talk in the early post exercise is still lacking. This study was aimed at identifying possible interactions between multiple systems following strenuous physical exercise (Ironman race) performed by twenty well-trained triathletes. Cardiac hemodynamics, left ventricle systolic and diastolic function and heart rate variability were measured along with plasma concentrations of immune messengers (cytokines and C-reactive protein) and stress-related hormones (catecholamines and cortisol) both 24h before and within 20 min after the race. Observed changes in antiinflammatory pathways, stress-related hormones and cardiovascular function were in line with previous findings; moreover, correlating parameters' changes (post versus pre-race) highlighted a dependence of cardiovascular function on the post-race biohumoral milieu: in particular, individual post-race variations of heart rate and diastolic function were strongly correlated with individual variations of anti-inflammatory cytokines, while individual baroreflex sensitivity changes were linked to IL-8 increase. Multiple correlations between anti-inflammatory cytokines and catecholamines were also found according with the autonomic regulation of immune function. Observed post-race cytokine and hormone levels were presumptively representative of the increases reached at the effort end while the cardiovascular parameters after the race were measured during the cardiovascular recovery; thus, results suggest that sustained strenuous exercise produced a stereotyped cardiovascular early recovery, whose speed could be conditioned by the immune and stress-related hormonal milieu
    corecore