8,595 research outputs found

    Asteroseismic modeling of 16 Cyg A & B using the complete Kepler data set

    Full text link
    Asteroseismology of bright stars with well-determined properties from parallax measurements and interferometry can yield precise stellar ages and meaningful constraints on the composition. We substantiate this claim with an updated asteroseismic analysis of the solar-analog binary system 16 Cyg A & B using the complete 30-month data sets from the Kepler space telescope. An analysis with the Asteroseismic Modeling Portal (AMP), using all of the available constraints to model each star independently, yields the same age (t=7.0±0.3t=7.0 \pm 0.3 Gyr) and composition (Z=0.021±0.002Z=0.021 \pm 0.002, Yi=0.25±0.01Y_i=0.25 \pm 0.01) for both stars, as expected for a binary system. We quantify the accuracy of the derived stellar properties by conducting a similar analysis of a Kepler-like data set for the Sun, and we investigate how the reliability of asteroseismic inference changes when fewer observational constraints are available or when different fitting methods are employed. We find that our estimates of the initial helium mass fraction are probably biased low by 0.02-0.03 from neglecting diffusion and settling of heavy elements, and we identify changes to our fitting method as the likely source of small shifts from our initial results in 2012. We conclude that in the best cases reliable stellar properties can be determined from asteroseismic analysis even without independent constraints on the radius and luminosity.Comment: 5 emulateapj pages, 1 table, 1 figure. ApJ Letters, accepte

    New and Old Tests of Cosmological Models and Evolution of Galaxies

    Get PDF
    We describe the classical cosmological tests, such as the LogNN-LogSS, redshift-magnitude and angular diameter tests, and propose some new tests of the evolution of galaxies and the universe. Most analyses of these tests treat the problem in terms of a luminosity function and its evolution which can lead to incorrect conclusions when dealing with high redshift sources. We develop a proper treatment in three parts. In the first part we describe these tests based on the isophotal values of the quantities such as flux, size or surface brightness. We show the shortcomings of the simple point source approximation based solely on the luminosity function and consideration of the flux limit. We emphasize the multivariate nature of the problem and quantify the effects of other selection biases due to the surface brightness and angular size limitations. In these considerations the surface brightness profile plays a critical role. In the second part we show that considerable simplification over the complicated isophotal scheme is achieved if these test are carried out in some sort of metric scheme, for example that suggested by Petrosian (1976). This scheme, however, is limited to well resolved sources. Finally, we describe the new tests, which use the data to a fuller extent than the isophotal or metric based tests, and amount to simply counting the pixels or adding their intensities as a function of the pixel surface brightness, instead of dealing with surface brightness, sizes and fluxes of individual galaxies. We show that the data analysis and its comparison with the theoretical models of the distributions and evolution of galaxies has the simplicity of the metric test and utilizes the data more fully than the isophotal test.Comment: 29 pages including 8 figures. http://www-bigbang.stanford.edu/~vahe/papers/finals/newtest.ps. To appear in ApJ, Oct. 199

    Passive Evolution: Are the Faint Blue Galaxy Counts Produced by a Population of Eternally Young Galaxies?

    Get PDF
    A constant age population of blue galaxies, postulated in the model of Gronwall & Koo (1995), seems to provide an attractive explanation of the excess of very blue galaxies in the deep galaxy counts. Such a population may be generated by a set of galaxies with cycling star formation rates, or at the other extreme, be maintained by the continual formation of new galaxies which fade after they reach the age specified in the Gronwall and Koo model. For both of these hypotheses, we have calculated the luminosity functions including the respective selection criteria, the redshift distributions, and the number counts in the B_J and K bands. We find a substantial excess in the number of galaxies at low redshift (0 < z < 0.05) over that observed in the CFH redshift survey (Lilly et al. 1995) and at the faint end of the Las Campanas luminosity function (Lin et al. 1996). Passive or mild evolution fails to account for the deep galaxy counts because of the implications for low redshift determinations of the I-selected redshift distribution and the r-selected luminosity function in samples where the faded counterparts of the star-forming galaxies would be detectable.Comment: 11 pages, LaTeX type (aaspp4.sty), 3 Postscript figures, submitted to ApJ Letter

    An asteroseismic test of diffusion theory in white dwarfs

    Full text link
    The helium-atmosphere (DB) white dwarfs are commonly thought to be the descendants of the hotter PG1159 stars, which initially have uniform He/C/O atmospheres. In this evolutionary scenario, diffusion builds a pure He surface layer which gradually thickens as the star cools. In the temperature range of the pulsating DB white dwarfs (T_eff ~ 25,000 K) this transformation is still taking place, allowing asteroseismic tests of the theory. We have obtained dual-site observations of the pulsating DB star CBS114, to complement existing observations of the slightly cooler star GD358. We recover the 7 independent pulsation modes that were previously known, and we discover 4 new ones to provide additional constraints on the models. We perform objective global fitting of our updated double-layered envelope models to both sets of observations, leading to determinations of the envelope masses and pure He surface layers that qualitatively agree with the expectations of diffusion theory. These results provide new asteroseismic evidence supporting one of the central assumptions of spectral evolution theory, linking the DB white dwarfs to PG1159 stars.Comment: 7 pages, 3 figures, 3 tables, accepted for publication in A&

    Investigating magnetic activity of F stars with the it Kepler mission

    Full text link
    The dynamo process is believed to drive the magnetic activity of stars like the Sun that have an outer convection zone. Large spectroscopic surveys showed that there is a relation between the rotation periods and the cycle periods: the longer the rotation period is, the longer the magnetic activity cycle period will be. We present the analysis of F stars observed by Kepler for which individual p modes have been measure and with surface rotation periods shorter than 12 days. We defined magnetic indicators and proxies based on photometric observations to help characterise the activity levels of the stars. With the Kepler data, we investigate the existence of stars with cycles (regular or not), stars with a modulation that could be related to magnetic activity, and stars that seem to show a flat behaviour.Comment: 2 pages, 1 figure, proceedings of IAU Symposium 302 'Magnetic fields through stellar evolution', 25-30 August 2013, Biarritz, Franc

    New Pulsating DB White Dwarf Stars from the Sloan Digital Sky Survey

    Full text link
    We are searching for new He atmosphere white dwarf pulsators (DBVs) based on the newly found white dwarf stars from the spectra obtained by the Sloan Digital Sky Survey. DBVs pulsate at hotter temperature ranges than their better known cousins, the H atmosphere white dwarf pulsators (DAVs or ZZ Ceti stars). Since the evolution of white dwarf stars is characterized by cooling, asteroseismological studies of DBVs give us opportunities to study white dwarf structure at a different evolutionary stage than the DAVs. The hottest DBVs are thought to have neutrino luminosities exceeding their photon luminosities (Winget et al. 2004), a quantity measurable through asteroseismology. Therefore, they can also be used to study neutrino physics in the stellar interior. So far we have discovered nine new DBVs, doubling the number of previously known DBVs. Here we report the new pulsators' lightcurves and power spectra.Comment: 15 pages, 2 figures, 3 tables, ApJ accepte
    • …
    corecore